The Sard problem in step 2 and in filiform Carnot groups,
ESAIM: Control, Optimisation and Calculus of Variations, Tome 28 (2022), article no. 75

We study the Sard problem for the endpoint map in some well-known classes of Carnot groups. Our first main result deals with step 2 Carnot groups, where we provide lower bounds (depending only on the algebra of the group) on the codimension of the abnormal set; it turns out that our bound is always at least 3, which improves the result proved in Le Donne et al. [Ann. Inst. H. Poincaré Anal. Non Linéaire 33 (2016) 1639–1666] and settles a question emerged in Ottazzi and Vittone [ESAIM: COCV 25 (2019) 18]. In our second main result we characterize the abnormal set in filiform groups and show that it is either a horizontal line, or a 3-dimensional algebraic variety.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/cocv/2022074
Classification : 53C17, 58K05, 22E25
Keywords: Sard problem, Carnot groups, abnormal curves
@article{COCV_2022__28_1_A75_0,
     author = {Boarotto, Francesco and Nalon, Luca and Vittone, Davide},
     title = {The {Sard} problem in step 2 and in filiform {Carnot} groups,},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {28},
     doi = {10.1051/cocv/2022074},
     mrnumber = {4524416},
     zbl = {1515.53026},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/cocv/2022074/}
}
TY  - JOUR
AU  - Boarotto, Francesco
AU  - Nalon, Luca
AU  - Vittone, Davide
TI  - The Sard problem in step 2 and in filiform Carnot groups,
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2022
VL  - 28
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/cocv/2022074/
DO  - 10.1051/cocv/2022074
LA  - en
ID  - COCV_2022__28_1_A75_0
ER  - 
%0 Journal Article
%A Boarotto, Francesco
%A Nalon, Luca
%A Vittone, Davide
%T The Sard problem in step 2 and in filiform Carnot groups,
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2022
%V 28
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2022074/
%R 10.1051/cocv/2022074
%G en
%F COCV_2022__28_1_A75_0
Boarotto, Francesco; Nalon, Luca; Vittone, Davide. The Sard problem in step 2 and in filiform Carnot groups,. ESAIM: Control, Optimisation and Calculus of Variations, Tome 28 (2022), article no. 75. doi: 10.1051/cocv/2022074

[1] A. A. Agrachev, Any sub-Riemannian metric has points of smoothness. Dokl. Akad. Nauk 424 (2009) 295–298. | MR | Zbl

[2] A. A. Agrachev, Some open problems. In Geometric control theory and sub-Riemannian geometry. Vol. 5 of Springer INdAM Ser. Springer, Cham (2014) pp. 1–13. | MR | Zbl

[3] A. A. Agrachev, A. Gentile and A. Lerario, Geodesics and horizontal-path spaces in Carnot groups. Geom. Topol. 19 (2015) 1569–1630. | MR | Zbl | DOI

[4] G. Alberti and A. Marchese, On the differentiability of Lipschitz functions with respect to measures in the Euclidean space. Geom. Funct. Anal. 26 (2016) 1–66. | MR | Zbl | DOI

[5] A. Belotto Da Silva, A. Figalli, A. Parusinski and L. Rifford, Strong Sard Conjecture and regularity of singular minimizing geodesics for analytic sub-Riemannian structures in dimension 3. Preprint available at . | arXiv | MR | Zbl

[6] A. Belotto Da Silva and L. Rifford, The Sard conjecture on Martinet surfaces. Duke Math. J. 167 (2018) 1433–1471. | MR | Zbl | DOI

[7] F. Boarotto and D. Vittone, A dynamical approach to the Sard problem in Carnot groups. J. Differ. Equ. 269 (2020) 4998–5033. | MR | Zbl | DOI

[8] R. L. Bryant, S. S. Chern, R. B. Gardner, H. L. Goldschmidt and P. A. Griffiths, Exterior differential systems. Vol. 18 of Mathematical Sciences Research Institute Publications. Springer-Verlag, New York (1991). | MR | Zbl

[9] Y. Chitour, F. Jean and E. Trélat, Genericity results for singular curves. J. Differ. Geom. 73 (2006) 45–73. | MR | Zbl

[10] E. Le Donne, G. P. Leonardi, R. Monti and D. Vittone, Extremal curves in nilpotent Lie groups. Geom. Funct. Anal. 23 (2013) 1371–1401. | MR | Zbl | DOI

[11] E. Le Donne, G. P. Leonardi, R. Monti and D. Vittone, Extremal polynomials in stratified groups. Comm. Anal. Geom. 26 (2018) 723–757. | MR | Zbl | DOI

[12] E. Le Donne, R. Montgomery, A. Ottazzi, P. Pansu and D. Vittone, Sard property for the endpoint map on some Carnot groups. Ann. Inst. H. Poincaré Anal. Non Linéaire 33 (2016) 1639–1666. | MR | Zbl | Numdam | DOI

[13] J. Martinet, Sur les singularités des formes différentielles. Ann. Inst. Fourier (Grenoble) 20 (1970) 95–178. | MR | Zbl | Numdam | DOI

[14] R. Montgomery, A tour of subriemannian geometries, their geodesics and applications. Vol. 91 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI (2002). | MR | Zbl

[15] A. Ottazzi and D. Vittone, On the codimension of the abnormal set in step two Carnot groups. ESAIM: COCV 25 (2019) 18. | MR | Zbl | Numdam

[16] L. Rifford and E. Trélat, Morse-Sard type results in sub-Riemannian geometry. Math. Ann. 332 (2005) 145–159. | MR | Zbl | DOI

[17] M. Vergne, Cohomologie des algèbres de Lie nilpotentes. Application a l’étude de la variété des algèbres de Lie nilpotentes. Bull. Soc. Math. France 98 (1970) 81–116. | MR | Zbl | Numdam | DOI

[18] I. Zelenko and M. Zhitomirskiĭ, Rigid paths of generic 2-distributions on 3-manifolds. Duke Math. J. 79 (1995) 281–307. | MR | Zbl | DOI

Cité par Sources :

L.N. is partially supported by the Swiss National Science Foundation (grant 200021-204501 Regularity of sub-Riemannian geodesics and applications) and by the European Research Council (ERC Starting Grant 713998 GeoMeG Geometry of Metric Groups).

D.V. is supported by University of Padova and by GNAMPA of INdAM (Italy).