Equivalence of three kinds of optimal control problems for linear heat equations with memory
ESAIM: Control, Optimisation and Calculus of Variations, Tome 28 (2022), article no. 73

This paper studies an equivalence theorem for three different kinds of optimal control problems, which are optimal time control problems, optimal norm control problems, and optimal target control problems. The controlled systems in this paper are internally controlled linear heat equations with memory.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/cocv/2022072
Classification : 35K05, 49J20, 93C20
Keywords: Equivalence of optimal controls, optimal target, optimal time, optimal norm, heat equation with memory
@article{COCV_2022__28_1_A73_0,
     author = {Wang, Lijuan and Zhou, Xiuxiang},
     title = {Equivalence of three kinds of optimal control problems for linear heat equations with memory},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {28},
     doi = {10.1051/cocv/2022072},
     mrnumber = {4524417},
     zbl = {1506.35251},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/cocv/2022072/}
}
TY  - JOUR
AU  - Wang, Lijuan
AU  - Zhou, Xiuxiang
TI  - Equivalence of three kinds of optimal control problems for linear heat equations with memory
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2022
VL  - 28
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/cocv/2022072/
DO  - 10.1051/cocv/2022072
LA  - en
ID  - COCV_2022__28_1_A73_0
ER  - 
%0 Journal Article
%A Wang, Lijuan
%A Zhou, Xiuxiang
%T Equivalence of three kinds of optimal control problems for linear heat equations with memory
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2022
%V 28
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2022072/
%R 10.1051/cocv/2022072
%G en
%F COCV_2022__28_1_A73_0
Wang, Lijuan; Zhou, Xiuxiang. Equivalence of three kinds of optimal control problems for linear heat equations with memory. ESAIM: Control, Optimisation and Calculus of Variations, Tome 28 (2022), article no. 73. doi: 10.1051/cocv/2022072

[1] M. Ashyraliyev, A note on the stability of the integral-differential equation of the hyperbolic type in a Hilbert space. Numer. Func. Anal. Optim. 29 (2008) 750–769. | MR | Zbl | DOI

[2] V. Barbu and M. Lannelli, Controllability of the heat equation with memory. Differ. Integr. Equ. 13 (2000) 1393–1412. | MR | Zbl

[3] A. J. V. Brandao, E. Fernandez-Cara, P. M. D. Magalhaes and M. A. Rojas-Medar, Theoretical analysis and control results for the Fitzhugh-Nagumo equation. Electr. J. Differ. Equ. 2008 (2008) 1–20. | MR | Zbl

[4] F. W. Chaves-Silva, X. Zhang and E. Zuazua, Controllability of evolution equations with memory. SIAM J. Control Optim. 55 (2017) 2437–2459. | MR | Zbl | DOI

[5] B. D. Coleman and M. E. Gurtin, Equipresence and constitutive equations for rigid heat conductors. Z. Angew. Math. Phys. 18 (1967) 199–208. | MR | DOI

[6] R. F. Curtain and A. J. Pritchard, Infinite dimensional linear systems theory. Lecture Notes in Control and Information Sciences, Springer-Verlag, Berlin (1978). | MR | Zbl | DOI

[7] M. Grasselli and A. Lorenzi, Abstract nonlinear Volterra integrodifferential equations with nonsmooth kernels. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 2 (1991) 43–53. | MR | Zbl

[8] S. Guerrero and O. Y. Imanuvilov, Remarks on non controllability of the heat equation with memory. ESAIM: COCV 19 (2013) 288–300. | MR | Zbl | Numdam

[9] A. Halanay and L. Pandolfi, Approximate controllability and lack of controllability to zero of the heat equation with memory. J. Math. Anal. Appl. 425 (2015) 194–211. | MR | Zbl | DOI

[10] S. Lang, Real and Functional Analysis. Springer-Verlag, New York (1993). | MR | Zbl | DOI

[11] R. K. Miller, An integro-differential equation for rigid heat conductors with memory. J. Math. Anal. Appl. 66 (1978) 313–332. | MR | Zbl | DOI

[12] G. S. Wang, L. J. Wang, Y. S. Xu and Y. B. Zhang, Time Optimal Control of Evolution Equations. Birkhauser, Cham (2018). | MR | Zbl

[13] G. S. Wang and Y. S. Xu, Equivalence of three different kinds of optimal control problems for heat equations and its applications. SIAM J. Control Optim. 51 (2013) 848–880. | MR | Zbl | DOI

[14] G. S. Wang, Y. B. Zhang and E. Zuazua, Flow decomposition for heat equations with memory. J. Math. Pures Appl. 158 (2022) 183–215. | MR | Zbl | DOI

[15] G. S. Wang, Y. B. Zhang and E. Zuazua, Observability for heat equations with memory. Preprint | arXiv

[16] L. J. Wang and X. X. Zhou, Minimal time control problem of a linear heat equation with memory. Syst. Control Lett. 157 (2021) Paper No. 105052, 7 pp. | MR | Zbl

[17] Z. Q. Wu, J. X. Yin and C. P. Wang, Elliptic and Parabolic Equations. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ (2006). | Zbl

[18] J. M. Yong and X. Zhang, Heat equation with memory in anisotropic and non-homogeneous media. Acta Math. Sin. (Engl. Ser.) 27 (2011) 219–254. | MR | Zbl | DOI

[19] X. X. Zhou, Integral-type approximate controllability of linear parabolic integro-differential equations. Systems Control Lett. 105 (2017) 44–47. | MR | Zbl | DOI

Cité par Sources :