Kernel representation of Kalman observer and associated -matrix based discretization
ESAIM: Control, Optimisation and Calculus of Variations, Tome 28 (2022), article no. 78

In deterministic estimation, applying a Kalman filter to a dynamical model based on partial differential equations is theoretically seducing but solving the associated Riccati equation leads to a so-called curse of dimensionality for its numerical implementation. In this work, we propose to entirely revisit the theory of Kalman filters for parabolic problems where additional regularity results proves that the Riccati equation solution belongs to the class of Hilbert-Schmidt operators. The regularity of the associated kernel then allows to proceed to the numerical analysis of the Kalman full space-time discretization in adapted norms, hence justifying the implementation of the related Kalman filter numerical algorithm with H-matrices typically developed for integral equations discretization.

DOI : 10.1051/cocv/2022071
Classification : 47D06, 49M41, 93B53
Keywords: Infinte dimensional systems, Riccati equation, data assimilation
@article{COCV_2022__28_1_A78_0,
     author = {Aussal, Matthieu and Moireau, Philippe},
     title = {Kernel representation of {Kalman} observer and associated $\mathcal{H}$-matrix based discretization},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {28},
     doi = {10.1051/cocv/2022071},
     mrnumber = {4524414},
     zbl = {07643481},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/cocv/2022071/}
}
TY  - JOUR
AU  - Aussal, Matthieu
AU  - Moireau, Philippe
TI  - Kernel representation of Kalman observer and associated $\mathcal{H}$-matrix based discretization
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2022
VL  - 28
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/cocv/2022071/
DO  - 10.1051/cocv/2022071
LA  - en
ID  - COCV_2022__28_1_A78_0
ER  - 
%0 Journal Article
%A Aussal, Matthieu
%A Moireau, Philippe
%T Kernel representation of Kalman observer and associated $\mathcal{H}$-matrix based discretization
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2022
%V 28
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2022071/
%R 10.1051/cocv/2022071
%G en
%F COCV_2022__28_1_A78_0
Aussal, Matthieu; Moireau, Philippe. Kernel representation of Kalman observer and associated $\mathcal{H}$-matrix based discretization. ESAIM: Control, Optimisation and Calculus of Variations, Tome 28 (2022), article no. 78. doi: 10.1051/cocv/2022071

[1] A. Aalto, Convergence of discrete-time Kalman filter estimate to continuous time estimate. Int. J. Control 89 (2016) 668–679. | MR | Zbl | DOI

[2] F. Alouges and M. Aussal, FEM and BEM simulations with the gypsilab framework. SMAI J. Comput. Math. 4 (2018) 297–318. | MR | Zbl | DOI

[3] W. Arendt, Heat kernels, Technical report, ISEM course, 2005-2006.

[4] J.-P. Aubin, Applied Functional Analysis, 2nd ed. Wiley (2000). | MR | Zbl

[5] U. Baur, P. Benner and L. Feng, Model order reduction for linear and nonlinear systems: a system-theoretic perspective. Arch. Comput. Methods Eng. 21 (2014) 331–358. | MR | Zbl | DOI

[6] W. Bebendorf and M. Hackbusch, Existence of -matrix approximants to the inverse FE-matrix of elliptic operators with L -coefficients. Numer. Math. 95 (2003) 1–28. | MR | Zbl | DOI

[7] A. Bensoussan, Filtrage optimal des systèmes linéaires. Dunod (1971). | Zbl

[8] A. Bensoussan, Estimation and Control of Dynamical Systems. Interdisciplinary Applied Mathematics. Springer, Cham (2018). | MR | Zbl

[9] A. Bensoussan, M. C. Delfour, G. Da Prato and S. K. Mitter, Representation and Control of Infinite Dimensional Systems, second edition. Birkhauser Verlag, Boston (2007). | MR | Zbl

[10] S. Börm, volume 14 Efficient numerical methods for non-local operators: H2-matrix compression, algorithms and analysis. European Mathematical Society (2010). | MR

[11] S. Borm, L. Grasedyck and W. Hackbusch, Introduction to hierarchical matrices with applications. Eng. Anal. Boundary Elem. 27 (2003) 405–422. | Zbl | DOI

[12] E. Burman and L. Oksanen, Data assimilation for the heat equation using stabilized finite element methods. Numer. Math. 139 (2018) 505–528. | MR | Zbl | DOI

[13] J. A. Burns, E. M. Cliff and C. N. Rautenberg, A distributed parameter control approach to optimal filtering and smoothing with mobile sensor networks, In 17th Mediterranean Conference on Control and Automation (2009), pp. 181–186.

[14] J. A. Burns and C. N. Rautenberg, Solutions and approximations to the Riccati integral equation with values in a space of compact operators. SIAM J. Control Optim. 53 (2015) 2846–2877. | MR | Zbl | DOI

[15] J. A. Burns and C. N. Rautenberg, The infinite-dimensional optimal filtering problem with mobile and stationary sensor networks. Numer. Funct. Anal. Optim. 36 (2015) 181–224. | MR | Zbl | DOI

[16] D. Chapelle, M. Fragu, V. Mallet and P. Moireau, Fundamental principles of data assimilation underlying the Verdandi library: applications to biophysical model personalization within euHeart. Med. Biol. Eng. Comput. (2012).

[17] D. Chapelle, A. Gariah, P. Moireau and J. Sainte-Marie, A Galerkin strategy with proper orthogonal decomposition for parameter-dependent problems - analysis, assessments and applications to parameter estimation. ESAIM: Math. Model. Numer. Anal. 47 (2013) 1821–1843. | MR | Zbl | Numdam | DOI

[18] G. Chavent, Nonlinear Least Squares for Inverse Problems. Springer (2010). | MR | DOI

[19] R. F. Curtain, A survey of infinite-dimensional filtering. SIAM Rev. 17 (1975) 395–411. | MR | Zbl | DOI

[20] R. F. Curtain, K. Mikkola and A. Sasane, The Hilbert-Schmidt property of feedback operators. J. Math. Anal. Appl. 329 (2007) 1145–1160. | MR | Zbl | DOI

[21] R. F. Curtain and H. Zwart, An introduction to infinite-dimensional linear systems theory. Vol. 21 of Texts in Applied Mathematics. Springer-Verlag, New York (1995). | MR | Zbl | DOI

[22] S. De Marchi and M. Vianello, Peano’s kernel theorem for vector-valued functions and some applications. Numer. Funct. Anal. Optim. 17 (1996) 57–64. | MR | Zbl | DOI

[23] H. W. Engl, M. Hanke and A. Neubauer, Regularization of inverse problems. Vol. 375 of Mathematics and its Applications. Kluwer Academic Publishers Group, Dordrecht (1996). | MR | Zbl

[24] F. Flandoli, On the semigroup approach to stochastic evolution equations. Stoch. Anal. Appl. 10 (1992) 181–203. | MR | Zbl | DOI

[25] H. Fujita, N. Saito and T. Suzuki, Operator Theory and Numerical Methods, Studies in Mathematics and Its Applications. North Holland (2001). | MR | Zbl

[26] A. Germani, L. Jetto and M. Piccioni, Galerkin approximation for optimal linear filtering of infinite-dimensional linear systems. SIAM J. Control Optim. 26 (1988) 1287–1305. | MR | Zbl | DOI

[27] L. Grasedyck, W. Hackbusch and B. N. Khoromskij, Solution of large scale algebraic matrix Riccati equations by use of hierarchical matrices. Comput. Arch. Sci. Comput. 70 (2003) 121–165. | MR | Zbl

[28] S. Guerrero and G. Lebeau, Singular optimal control for a transport-diffusion equation. Commun. Partial Differ. Equ. 32 (2007) 1813–1836. | MR | Zbl | DOI

[29] W. Hackbusch, A sparse matrix arithmetic based on -matrices. I. Introduction to -matrices. Comput. Arch. Sci. Comput. 62 (1999) 89–108. | MR | Zbl

[30] W. Hackbusch, Hierarchical Matrices: Algorithms and Analysis, Springer Publishing Company, Incorporated, 1st edition (2015). | MR | Zbl

[31] R. E. Kalman, A new approach to linear filtering and prediction problems. J. Basic Eng. 82 (1960) 35–45. | MR | DOI

[32] R. E. Kalman and R. S. Bucy, New results in linear filtering and prediction theory. J. Basic Eng. 83 (1961) 95–108. | MR | Zbl | DOI

[33] T. Kato, Fractional powers of dissipative operators. J. Math. Soc. Jpn. 13 (1961) 246–274. | MR | Zbl | DOI

[34] I. Lasiecka and R. Triggiani, Differential and Algebraic Riccati Equations with Application to Boundary/Point Control Problems: Continuous Theory and Approximation Theory. Lecture Notes in Control and Information Sciences. Springer, Berlin, Heidelberg (1991). | MR | Zbl | DOI

[35] C. Le Bris and P. Rouchon, Low-rank numerical approximations for high-dimensional Lindblad equations. Phys. Rev. A 87 (2013) 022125. | DOI

[36] F.-X. Le Dimet, Optimal control for data assimilation in meteorology, In Control theory of distributed parameter systems and applications (Shanghai, 1990). Vol. 159 of Lecture Notes in Control and Inform. Sci. Springer, Berlin (1991), pp. 51–60. | MR | Zbl

[37] F.-X. Le Dimet and O. Talagrand, Variational algorithms for analysis and assimilation of meteorological observation: theoretical aspects. Tellus 38 (1986) 97–110. | DOI

[38] J. Y. Li, S. Ambikasaran, E. F. Darve and P. K. Kitanidis, A Kalman filter powered by H2-matrices for quasi-continuous data assimilation problems. Water Resour. Res. 50 (2014) 3734–3749. | DOI

[39] J.-L. Lions, Controle optimal de systèmes gouvernés par des équations aux dérivées partielles, Avant propos de P. Lelong. Dunod, Paris (1968). | MR | Zbl

[40] J.-L. Lions, Exact controllability, stabilization and perturbations for distributed systems. SIAM Rev. 30 (1988) 1–68. | MR | Zbl | DOI

[41] J.-L. Lions, Espaces d’interpolation et domaines de puissances fractionnaires d’opérateurs. J. Math. Soc. Jpn. 14 (1962) 233–241. | MR | Zbl | DOI

[42] Y. Maday, A. T. Patera, J. D. Penn and M. Yano, A parameterized-background data-weak approach to variational data assimilation: formulation, analysis, and application to acoustics. Int. J. Numer. Methods Eng. 102 (2014) 933–965. | MR | Zbl | DOI

[43] A. Nassiopoulos and F. Bourquin, Fast three-dimensional temperature reconstruction. Comput. Methods Appl. Mech. Eng. 199 (2010) 3169–3178. | MR | Zbl | DOI

[44] S. Pagani, A. Manzoni and A. Quarteroni, Efficient state/parameter estimation in nonlinear unsteady PDEs by a reduced basis ensemble Kalman filter. SIAM/ASA J. Uncert. Quantif. 5 (2017) 890–921. | MR | Zbl | DOI

[45] A. Pazy, Semigroups of linear operators and applications to partial differential equations. Vol. 44 of Applied Mathematical Sciences. Springer-Verlag, New York (1983). | MR | Zbl

[46] D. T. Pham, J. Verron and M. C. Roubaud, A singular evolutive extended Kalman filter for data assimilation in oceanography. J. Mar. Syst. 16 (1998) 323–340. | DOI

[47] S. Sellam and A. Forcioli, Introduction de la notion d’écart entre sous-espaces vectoriels en analyse de données. RAIRO: Oper. Res. 14 (1980). | MR | Zbl | Numdam | DOI

[48] D. Simon, Optimal State Estimation: Kalman, H, and Nonlinear Approaches. Wiley-Interscience (2006). | DOI

[49] H. Tanabe, Equations of evolution. Vol. 6 of Monographs and Studies in Mathematics, Pitman (Advanced Publishing Program), Boston, Mass.-London (1979). | MR | Zbl

[50] R. Temam, Sur l’équation de Riccati associée à des opérateurs non bornés, en dimension infinie. J. Funct. Anal. 7 (1971) 85–115. | MR | Zbl | DOI

Cité par Sources :