Error Estimates for a Tree Structure Algorithm Solving Finite Horizon Control Problems
ESAIM: Control, Optimisation and Calculus of Variations, Tome 28 (2022), article no. 69

In the dynamic programming approach to optimal control problems a crucial role is played by the value function that is characterized as the unique viscosity solution of a Hamilton-Jacobi-Bellman (HJB) equation. It is well known that this approach suffers from the “curse of dimensionality” and this limitation has reduced its use in real world applications. Here, we analyze a dynamic programming algorithm based on a tree structure to mitigate the “curse of dimensionality”. The tree is built by the discrete time dynamics avoiding the use of a fixed space grid which is the bottleneck for highdimensional problems, this also drops the projection on the grid in the approximation of the value function. In this work, we present first order error estimates for the the approximation of the value function based on the tree-structure algorithm. The estimate turns out to have the same order of convergence of the numerical method used for the approximation of the dynamics. Furthermore, we analyze a pruning technique for the tree to reduce the complexity and minimize the computational effort. Finally, we present some numerical tests to show the theoretical results.

DOI : 10.1051/cocv/2022067
Classification : 49L20, 49J15, 49J20, 93B52
Keywords: Dynamic programming, Hamilton-Jacobi-Bellman equation, optimal control, tree structure, error estimates
@article{COCV_2022__28_1_A69_0,
     author = {Saluzzi, Luca and Alla, Alessandro and Falcone, Maurizio},
     title = {Error {Estimates} for a {Tree} {Structure} {Algorithm} {Solving} {Finite} {Horizon} {Control} {Problems}},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {28},
     doi = {10.1051/cocv/2022067},
     mrnumber = {4506570},
     zbl = {1503.49025},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/cocv/2022067/}
}
TY  - JOUR
AU  - Saluzzi, Luca
AU  - Alla, Alessandro
AU  - Falcone, Maurizio
TI  - Error Estimates for a Tree Structure Algorithm Solving Finite Horizon Control Problems
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2022
VL  - 28
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/cocv/2022067/
DO  - 10.1051/cocv/2022067
LA  - en
ID  - COCV_2022__28_1_A69_0
ER  - 
%0 Journal Article
%A Saluzzi, Luca
%A Alla, Alessandro
%A Falcone, Maurizio
%T Error Estimates for a Tree Structure Algorithm Solving Finite Horizon Control Problems
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2022
%V 28
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2022067/
%R 10.1051/cocv/2022067
%G en
%F COCV_2022__28_1_A69_0
Saluzzi, Luca; Alla, Alessandro; Falcone, Maurizio. Error Estimates for a Tree Structure Algorithm Solving Finite Horizon Control Problems. ESAIM: Control, Optimisation and Calculus of Variations, Tome 28 (2022), article no. 69. doi: 10.1051/cocv/2022067

[1] M. Akian, S. Gaubert and A. Lakhoua, The max-plus finite element method for solving deterministic optimal control problems: basic properties and convergence analysis. SIAM J. Control Optim. 47 (2008) 817–848. | MR | Zbl | DOI

[2] A. Alla, M. Falcone and D. Kalise, An efficient policy iteration algorithm for dynamic programming equations. SIAM J. Sci. Comput. 37 (2015) 181–200. | MR | Zbl | DOI

[3] A. Alla, M. Falcone and L. Saluzzi, An efficient DP algorithm on a tree-structure for finite horizon optimal control problems. SIAM J. Sci. Comput. 41 (2019) A2384–A2406. | MR | Zbl | DOI

[4] A. Alla, M. Falcone and L. Saluzzi, High-order approximation of the finite horizon control problem via a tree structure algorithm. IFAC-PapersOnLine 52 (2019) 19–24. | MR | DOI

[5] A. Alla, M. Falcone and L. Saluzzi, A tree structure algorithm for optimal control problems with state constraints. Rend. Matemat. Sue Applic. 41 (2020) 193–221. | MR | Zbl

[6] A. Alla, M. Falcone and S. Volkwein, Error analysis for POD approximations of infinite horizon problems via the dynamic programming approach. SIAM J. Control Optim. 55 (2017) 3091–3115. | MR | Zbl | DOI

[7] A. Alla and L. Saluzzi, A HJB-POD approach for the control of nonlinear PDEs on a tree structure. Appl. Numer. Math. 155 (2020) 192–207. | MR | Zbl | DOI

[8] A. Alla and L. Saluzzi, Feedback reconstruction techniques for optimal control problems on a tree structure, Preprint (2022). | arXiv | Zbl

[9] M. Assellaou, O. Bokanowski and A. Desilles, H. Zidani, Value function and optimal trajectories for a maximum running cost control problem with state constraints. Application to an abort landing problem. ESAIM: Math. Model. Numer. Anal 52 (2018) 305–335. | MR | Zbl | Numdam | DOI

[10] A. Bachouch, C. Huré, N. Langrené and H. Pham, Deep neural networks algorithms for stochastic control problems on finit hotizone: numerical applications. Methodol. Comput. Appl. Probab. 24 (2022) 143–178. | MR | Zbl | DOI

[11] M. Bardi and I. Capuzzo-Dolcetta, Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations. Birkhäuser, Basel (1997). | Zbl | DOI

[12] R. Bellman, Dynamic Programming. Princeton University Press, Princeton, NJ (1957). | MR | Zbl

[13] P. Benner, Z. Bujanovič, P. Kürschner and J. Saak, A numerical comparison of different solvers for large-scale, continuous-time algebraic Riccati equations and LQR problems. SIAM J. Sci. Comput. 42 (2020) A957–A996. | MR | Zbl | DOI

[14] D. Bini, B. Iannazzo and B. Meini, Numerical Solution of Algebraic Riccati Equations, Fundam. Algorithms, SIAM, Philadelphia (2012). | MR | Zbl

[15] S. Cacace, E. Cristiani, M. Falcone and A. Picarelli, A patchy dynamic programming scheme for a class of Hamilton-Jacobi- Bellman equations. SIAM J. Sci. Comput. 34 (2012) A2625–A2649. | MR | Zbl | DOI

[16] P. Cannarsa and C. Sinestrari, Semiconcave functions, Hamilton-Jacobi equations and optimal control problems. Birkhäuser Boston (2004). | MR | Zbl | DOI

[17] I. Capuzzo Dolcetta, On a discrete approximation of the Hamilton-Jacobi equation of dynamic programming. Appl. Math. Optim. 10 (1983) 367–377. | MR | Zbl | DOI

[18] I. Capuzzo Dolcetta and H. Ishii, Approximate solutions of the Bellman equation of deterministic control theory. Appl. Math. Optim. 11 (1984) 161–181. | MR | Zbl | DOI

[19] J. Darbon and S. Osher, Splitting enables overcoming the curse of dimensionality. Splitting methods in communication, imaging, science, and engineering, Sci. Comput., Springer, Cham (2016) 427–432. | MR | Zbl

[20] J. Darbon and S. Osher, Algorithms for overcoming the curse of dimensionality for certain Hamilton-Jacobi equations arising in control theory and elsewhere. Res. Math. Sci. 3 (2016) 19–26. | MR | Zbl | DOI

[21] S. Dolgov, D. Kalise and K. Kunisch, Tensor decompositions for high-dimensional Hamilton-Jacobi-Bellman equations. SIAM J. Sci. Comput. 43 (2021) A1625–A1650. | MR | Zbl | DOI

[22] S. Dolgov, D. Kalise and L. Saluzzi, Data-driven Tensor Train Gradient Cross Approximation for Hamilton-Jacobi-Bellman Equations. Preprint (2022). | arXiv | MR

[23] M. Falcone, A numerical approach to the infinite horizon problem of deterministic control theory, Appl. Math. Optim. 15 (1987) 1–13. | MR | Zbl | DOI

[24] M. Falcone and R. Ferretti, Discrete time high-order schemes for viscosity solutions of Hamilton-Jacobi-Bellman equations. Numer. Math. 67 (1994) 315–344. | MR | Zbl | DOI

[25] M. Falcone and R. Ferretti, Semi-Lagrangian Approximation Schemes for Linear and Hamilton-Jacobi equations. SIAM (2013). | MR | Zbl

[26] M. Falcone and T. Giorgi, An approximation scheme for evolutive Hamilton-Jacobi equations, in W. M. Mceneaney, G. Yin and Q. Zhang (eds.), “Stochastic Analysis, Control, Optimization and Applications: A Volume in Honor of W.H. Fleming”. Birkhaäuser (1999) 289–303. | MR

[27] M. Falcone, P. Lanucara and A. Seghini, A splitting algorithm for Hamilton-Jacobi-Bellman equations. Appl. Numer. Math. 15 (1994) 207–218. | MR | Zbl | DOI

[28] A. Festa, Domain decomposition based parallel Howard’s algorithm. Math. Comput. Simul. 147 (2018) 121–139. | MR | Zbl | DOI

[29] W. H. Fleming and H. M. Soner, Controlled Markov processes and viscosity solutions. Springer–Verlag, New York (1993). | MR | Zbl

[30] J. Garcke and A. Kröner, Suboptimal feedback control of PDEs by solving HJB equations on adaptive sparse grids. J. Sci. Comput. 70 (2017) 1–28. | MR | Zbl | DOI

[31] L. Grüne and J. Pannek, Nonlinear Model Predictive Control. Springer (2011). | MR | Zbl | DOI

[32] L. Grüne, Dynamic programming, optimal control and model predictive control. Handbook of Model Predictive Control. Control Eng., Birkhäuser/Springer, Cham (2019), pp. 29–52. | MR | DOI

[33] J. Han, A. Jentzen and E. Weinan, Solving high-dimensional partial differential equations using deep learning. Proc. Natl. Acad. Sci. USA 115 (2018) 8505–8510. | MR | Zbl | DOI

[34] M. Hinze, R. Pinnau, M. Ulbrich and S. Ulbrich, vol. 23 of Optimization with PDE Constraints. Mathematical Modelling: Theory and Applications. Springer–Verlag (2009). | MR | Zbl

[35] C. Huré, H. Pham, A. Bachouch and N. Langrené, Deep neural networks algorithms for stochastic control problems on finite horizon: Convergence analysis. SINUM 59 (2021) 525–557. | MR | Zbl | DOI

[36] D. Kalise and K. Kunisch, Polynomial approximation of high-dimensional Hamilton-Jacobi-Bellman equations and applications to feedback control of semilinear parabolic PDEs. SIAM J. Sci. Comput. 40 (2018) A629–A652. | MR | Zbl | DOI

[37] K. Kunisch, S. Volkwein and L. Xie, HJB-POD based feedback design for the optimal control of evolution problems. SIAM J. Appl. Dyn. Syst. 4 (2004) 701–722. | MR | Zbl | DOI

[38] R. J. Leveque, Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-Dependent Problems. SIAM Book (2007). | MR | Zbl | DOI

[39] W. M. Mceneaney, Convergence rate for a curse-of-dimensionality-free method for Hamilton-Jacobi-Bellman PDEs represented as maxima of quadratic forms. SIAM J. Control Optim. 48 (2009) 2651–2685. | MR | Zbl | DOI

[40] W. M. Mceneaney, A curse-of-dimensionality-free numerical method for solution of certain HJB PDEs. SIAM J. Control Optim. 46 (2007) 1239–1276. | MR | Zbl | DOI

[41] C. Navasca and A. J. Krener, Patchy solutions of Hamilton-Jacobi-Bellman partial differential equations, in A. Chiuso et al. (eds.), vol. 364 of Modeling, Estimation and Control, Lecture Notes in Control and Information Sciences (2007), pp. 251–270. | MR | Zbl

[42] S. Osher and R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces. Springer (2003). | MR | Zbl | DOI

[43] L. Saluzzi, A Tree-Structure Algorithm for Optimal Control Problems via Dynamic Programming, PhD thesis, Gran Sasso Science Institute (2020) https://iris.gssi.it/handle/20.500.12571/10021.

[44] J. A. Sethian, Level set methods and fast marching methods. Cambridge University Press (1999). | MR | Zbl

[45] V. Simoncini, Analysis of the rational Krylov subspace projection method for large-scale algebraic Riccati equations. SIAM J. Matrix Anal. Appl. 37 (2016) 1655–1674. | MR | Zbl | DOI

[46] V. Simoncini, D. B. Szyld and M. Monsalve, On two numerical methods for the solution of large-scale algebraic Riccati equations. IMA J. Numer. Anal. 34 (2014) 904–920. | MR | Zbl | DOI

[47] S. Volkwein, Model Reduction using Proper Orthogonal Decomposition, Lecture Notes, University of Konstanz (2013).

[48] I. Yegorov, P. M. Dower and L. Grüne, A characteristics based curse-of-dimensionality-free approach for approximating control Lyapunov functions and feedback stabilization. Proceedings of the 23rd International Symposium on Mathematical Theory of Networks and Systems Hong Kong University of Science and Technology, Hong Kong, July 16–20 (2018) 342–349.

Cité par Sources :

Funding: This work was supported by the Italian Ministry of Instruction, University and Research (MIUR) PRIN Project 2107 (2017KKJP4X entitled ”Innovative numerical methods for evolutionary partial differential equations and applications