Structure of optimal control for planetary landing with control and state constraints
ESAIM: Control, Optimisation and Calculus of Variations, Tome 28 (2022), article no. 67

This paper studies a vertical powered descent problem in the context of planetary landing, considering glide-slope and thrust pointing constraints and minimizing any final cost. In a first time, it proves the Max-Min-Max or Max-Singular-Max form of the optimal control using the Pontryagin Maximum Principle, and it extends this result to a problem formulation considering the effect of an atmosphere. It also shows that the singular structure does not appear in generic cases. In a second time, it theoretically analyzes the optimal trajectory for a more specific problem formulation to show that there can be at most one contact or boundary interval with the state constraint on each Max or Min arc.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/cocv/2022065
Classification : 49N60, 49K15, 49N90
Keywords: Optimal Control, Aerospace, Planetary Landing
@article{COCV_2022__28_1_A67_0,
     author = {Leparoux, Clara and H\'eriss\'e, Bruno and Jean, Fr\'ed\'eric},
     title = {Structure of optimal control for planetary landing with control and state constraints},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {28},
     doi = {10.1051/cocv/2022065},
     mrnumber = {4504128},
     zbl = {1503.49007},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/cocv/2022065/}
}
TY  - JOUR
AU  - Leparoux, Clara
AU  - Hérissé, Bruno
AU  - Jean, Frédéric
TI  - Structure of optimal control for planetary landing with control and state constraints
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2022
VL  - 28
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/cocv/2022065/
DO  - 10.1051/cocv/2022065
LA  - en
ID  - COCV_2022__28_1_A67_0
ER  - 
%0 Journal Article
%A Leparoux, Clara
%A Hérissé, Bruno
%A Jean, Frédéric
%T Structure of optimal control for planetary landing with control and state constraints
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2022
%V 28
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2022065/
%R 10.1051/cocv/2022065
%G en
%F COCV_2022__28_1_A67_0
Leparoux, Clara; Hérissé, Bruno; Jean, Frédéric. Structure of optimal control for planetary landing with control and state constraints. ESAIM: Control, Optimisation and Calculus of Variations, Tome 28 (2022), article no. 67. doi: 10.1051/cocv/2022065

[1] B. Acikmese, J. Carson and L. Blackmore. Lossless convexifìcation of the soft landing optimal control problem with non-convex control bound and pointing constraints. IEEE Trans. Control Syst. Technol. 21 (2013) 2104–2113. | DOI

[2] B. Acikmese and S. Ploen Convex programming approach to powered descent guidance for mars landing. J. Guidance Control Dyn. 30 (2007) 1353–1366. | DOI

[3] J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings and M. Diehl CasADi — a software framework for nonlinear optimization and optimal control. Math. Programm. Comput. 11 (2019) 1–36. | MR | Zbl | DOI

[4] L. Blackmore Autonomous precision landing of space rockets. The Bridge 46 (2016) 15–20.

[5] L. Blackmore, B. Açikmeçe and D. P. Scharf Minimum-landing-error powered-descent guidance for mars landing using convex optimization. J. Guidance Control Dyn. 33 (2010) 1161–1171. | DOI

[6] Z. Chen, J.-B. Caillau and Y. Chitour, L1-minimization for mechanical systems. SIAM J. Control Optim. 54 (2016) 1245–1265. | MR | Zbl | DOI

[7] Y. Chitour, F. Jean and E. Trélat Genericity results for singular curves. J. Differ. Geom. 73 (2006) 45–73. | MR | Zbl

[8] F. Gazzola and E. M. Marchini, A minimal time optimal control for a drone landing problem. ESAIM: COCV 27 (2021) 99. | MR | Zbl

[9] G. Leitmann On a class of variational problems in rocket flight. J. Aerospace Sci. 26 (1959) 586–591. | MR | Zbl | DOI

[10] C. Leparoux, B. Hérissé and F. Jean Optimal planetary landing with pointing and glide-slope constraints. 2022 61th IEEE Conference on Decision and Control (CDC), 2022. | DOI

[11] P. Lu Propellant-optimal powered descent guidance. J. Guidance Control Dyn. 41 (2018) 813–826. | DOI

[12] L. Ma, K. Wang, Z. Xu, Z. Shao, Z. Song and L. T. Biegler Multi-point powered descent guidance based on optimal sensitivity. Aerospace Sci. Technol. 86 (2019) 465–477. | DOI

[13] J. Meditch On the problem of optimal thrust programming for a lunar soft landing. IEEE Trans. Automatic Control 9 (1964) 477–484. | MR | DOI

[14] H. Ménou, E. Bourgeois and N. Petit, Fuel-optimal program for atmospheric vertical powered landing. in 2021 60th IEEE Conference on Decision and Control (CDC), 2021, 6312–6319. | DOI

[15] A. Miele The calculus of variations in applied aerodynamics and flight mechanics. Math. Sci. Eng. 5 (1962) 99–170. | MR | DOI

[16] S. Ploen, B. Acikmese and A. Wolf, A comparison of powered descent guidance laws for mars pinpoint landing. In AIAA/AAS Astrodynamics Specialist Conference and Exhibit, August 2006. | DOI

[17] H. M. Robbins Optimality of intermediate-thrust arcs of rocket trajectories. AIAA J. 3 (1965) 1094–1098. | MR | Zbl | DOI

[18] H. Schättler The local structure of time-optimal trajectories in dimension three under generic conditions. SIAM J. Control Optim. 26 (1988) 899–918. | MR | Zbl | DOI

[19] R. Sostaric and J. Rea, Powered descent guidance methods for the moon and mars. in AIAA Guidance, Navigation, and Control Conference and Exhibit, June 2005. | DOI

[20] H. J. Sussmann The structure of time-optimal trajectories for single-input systems in the plane: the general real analytic case. SIAM J. Control Optim. 25 (1967) 868–904. | MR | Zbl | DOI

[21] U. Topcu, J. Casoliva and K. Mease, Fuel efficient powered descent guidance for mars landing. in AIAA Guidance, Navigation, and Control Conference and Exhibit, 2005. | DOI

[22] U. Topcu, J. Casoliva and K. D. Mease Minimum-fuel powered descent for mars pinpoint landing. J. Spacecraft Rockets 44 (2007) 324–331. | DOI

[23] E. Trélat Optimal control and applications to aerospace: Some results and challenges. J. Optim. Theory Appl. 154 (2012) 713–758. | MR | Zbl | DOI

[24] R. Vinter, Optimal Control. Modern Birkhauser Classics. Springer, 2010. | MR

[25] A. A. Wolf, B. Acikmese, Y. Cheng, J. Casoliva, J. M. Carson and M. C. Ivanov, Toward improved landing precision on mars. in 2011 Aerospace Conference, March 2011. | DOI

[26] W. P. Ziemer, Modern real analysis, Vol. 278 of Graduate Texts in Mathematics, 2nd edn. Springer, Cham, 2017. With contributions by Monica Torres. | MR | Zbl

Cité par Sources :