Optimal control of anisotropic Allen-Cahn equations
ESAIM: Control, Optimisation and Calculus of Variations, Tome 28 (2022), article no. 71

This paper aims at solving an optimal control problem governed by an anisotropic Allen-Cahn equation numerically. Therefor we first prove the Frechet differentiability of an in time discretized parabolic control problem under certain assumptions on the involved quasilinearity and formulate the first order necessary conditions. As a next step, since the anisotropies are in general not smooth enough, the convergence behavior of the optimal controls is studied for a sequence of (smooth) approximations of the former quasilinear term. In addition the simultaneous limit in the approximation and the time step size is considered. For a class covering a large variety of anisotropies we introduce a certain regularization and show the previously formulated requirements. Finally, a trust region Newton solver is applied to various anisotropies and configurations, and numerical evidence for mesh independent behavior and convergence with respect to regularization is presented.

DOI : 10.1051/cocv/2022063
Classification : 35K59, 49K20, 49M41, 65M60
Keywords: Allen-Cahn equation, anisotropy, quasilinear parabolic equation, optimal control, regularization, discretization, optimality conditions
@article{COCV_2022__28_1_A71_0,
     author = {Blank, Luise and Meisinger, Johannes},
     title = {Optimal control of anisotropic {Allen-Cahn} equations},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {28},
     doi = {10.1051/cocv/2022063},
     mrnumber = {4513262},
     zbl = {1504.35030},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/cocv/2022063/}
}
TY  - JOUR
AU  - Blank, Luise
AU  - Meisinger, Johannes
TI  - Optimal control of anisotropic Allen-Cahn equations
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2022
VL  - 28
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/cocv/2022063/
DO  - 10.1051/cocv/2022063
LA  - en
ID  - COCV_2022__28_1_A71_0
ER  - 
%0 Journal Article
%A Blank, Luise
%A Meisinger, Johannes
%T Optimal control of anisotropic Allen-Cahn equations
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2022
%V 28
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2022063/
%R 10.1051/cocv/2022063
%G en
%F COCV_2022__28_1_A71_0
Blank, Luise; Meisinger, Johannes. Optimal control of anisotropic Allen-Cahn equations. ESAIM: Control, Optimisation and Calculus of Variations, Tome 28 (2022), article no. 71. doi: 10.1051/cocv/2022063

[1] M. Alfaro, H. Garcke, D. Hilhorst, H. Matano and R. Schätzle, Motion by anisotropic mean curvature as sharp interface limit of an inhomogeneous and anisotropic Allen-Cahn equation. Proc. Roy. Soc. Edinburgh Sect. A 140 (2010) 673-706. | MR | Zbl | DOI

[2] M. S. Alnæs, J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg, C. Richardson, J. Ring, M. E. Rognes and G. N. Wells, The FEniCS Project Version 1.5. Arch. Numer. Softw. 3 (2015) 20553.

[3] J. W. Barrett, H. Garcke and R. Nurnberg, Numerical approximation of anisotropic geometric evolution equations in the plane. IMA J. Numer. Anal. 28 (2007) 292-330. | MR | Zbl | DOI

[4] J. W. Barrett, H. Garcke and R. Nurnberg, A variational formulation of anisotropic geometric evolution equations in higher dimensions. Numer. Math. 109 (2008) 1-44. | MR | Zbl | DOI

[5] J. W. Barrett, H. Garcke and R. Nurnberg, On the stable discretization of strongly anisotropic phase field models with applications to crystal growth, Z. Angew. Math. Mech. 93 (2013) 719-732. | MR | Zbl | DOI

[6] L. Blank and J. Meisinger, Optimal control of a quasilinear parabolic equation and its time discretization. Appl. Math. Optim. 86, 34 (2022), DOI: . | DOI | MR | Zbl

[7] E. Casas and L. A. Fernández, Boundary control of quasilinear elliptic equations, Research Report RR-0782, INRIA (1988). | MR | Zbl

[8] E. Casas and L. A. Fernández, Optimal control of quasilinear elliptic equations with non differentiable coefficients at the origin. Rev. Mat. Complut. 4 (1991) 227-250. | MR | Zbl | DOI

[9] E. Casas and L. A. Fernández, Distributed control of systems governed by a general class of quasilinear elliptic equations. J. Differ. Equ. 104 (1993) 20-47. | MR | Zbl | DOI

[10] E. Casas and L. A. Fernández, Dealing with integral state constraints in boundary control problems of quasilinear elliptic equations. SIAM J. Control Optim. 33 (1995) 568-589. | MR | Zbl | DOI

[11] A. R. C. Clason, V. H. Nhu, Optimal control of a non-smooth quasilinear elliptic equation. Math. Control Relat. Fields 11 (2021) 521-554. | MR | Zbl | DOI

[12] A. R. Conn, N. I. M. Gould and P. L. Toint, Trust Region Methods, MPS-SIAM Series on Optimization, Society for Industrial and Applied Mathematics (2000). | MR | Zbl

[13] K. Deckelnick, G. Dziuk and C. M. Elliott, Computation of geometric partial differential equations and mean curvature flow. Acta Num. 14 (2005) 139-232. | MR | Zbl | DOI

[14] J. J. Eggleston, G. B. Mcfadden and P. W. Voorhees, A phase-field model for highly anisotropic interfacial energy. Physica D 150 (2001) 91-103. | Zbl | DOI

[15] C. M. Elliott and R. Schätzle, The limit of the anisotropic double-obstacle Allen-Cahn equation. Proc. Roy. Soc. Edinburgh Sect. A 126 (1996) 1217-1234. | MR | Zbl | DOI

[16] C. Gräser, R. Kornhuber and U. Sack, Time discretizations of anisotropic Allen-Cahn equations. IMA J. Numer. Anal. 33 (2013) 1226-1244. | MR | Zbl | DOI

[17] M. Hinze, R. Pinnau, M. Ulbrich and S. Ulbrich, Optimization with PDE Constraints, Mathematical Modelling: Theory and Applications, Springer, Netherlands (2008). | MR

[18] R. Kobayashi, Modeling and numerical simulations of dendritic crystal growth. Physica D 63 (1993) 410-423. | Zbl | DOI

[19] A. Logg and G. N. Wells, DOLFIN: automated finite element computing. ACM Trans. Math. Software 37, 2, Article No.: 20, (2010) 1-28. | MR | Zbl | DOI

[20] A. Miranville, On an anisotropic Allen-Cahn system. Cubo (Temuco) 17 (2015) 73-88. | MR | Zbl | DOI

[21] A. Räatz and A. Voigt, Higher order regularization of anisotropic geometric evolution equations in three dimensions. J. Comput. Theor. Nanosci. 3 (2006) 560-564. | DOI

[22] T. Steihaug, The conjugate gradient method and trust regions in large scale optimization. SIAM J. Numer. Anal. 20 (1983) 626-637. | MR | Zbl | DOI

[23] S. Torabi, J. Lowengrub, A. Voigt and S. Wise, A new phase-field model for strongly anisotropic systems. Proc. Roy. Soc. Edinburgh Sect. A 465 (2009) 1337-1359. | MR | Zbl

[24] G. Wachsmuth, Differentiability of implicit functions: beyond the implicit function theorem. J. Math. Anal. Appl. 414 (2014) 259-272 | MR | Zbl | DOI

[25] G. Wachsmuth, Optimal control of quasistatic plasticity with linear kinematic hardening, Part II: Regularization and differentiability. Z. Anal. Anwend. 34 (2015) 391-418. | MR | Zbl | DOI

[26] G. Wachsmuth, Optimal control of quasistatic plasticity with linear kinematic hardening, Part III: Optimality conditions. Z. Anal. Anwend. 35 (2016) 81-118. | MR | Zbl | DOI

[27] S. M. Wise, J. Kim and J. S. Lowengrub, Solving the regularized, strongly anisotropic Cahn-Hilliard equation by an adaptive non-linear multigrid method. J. Comp. Phys. 226 (2007) 441-446. | MR | Zbl

[28] M. Wolff and M. Bäohm, On parameter identification for general linear elliptic problems of second order, Berichte aus der Technomathematik 18-01, Universitat Bremen, Zentrum fur Technomathematik, Fachbereich 3-Mathematik und Informatik (2018).

[29] G. Wulff, XXV. Zur Frage der Geschwindigkeit des Wachsthums und der Auflösung der Krystallflächen. Z. Kristallogr. - Cryst. Mater. 34 (1901) 449-530. | DOI

[30] E. Zeidler and L. F. Boron, Nonlinear Functional Analysis and its Applications: II/B: Nonlinear Monotone Operators, Springer New York (2013). | MR

Cité par Sources :