Sequential convex programming for non-linear stochastic optimal control
ESAIM: Control, Optimisation and Calculus of Variations, Tome 28 (2022), article no. 64

This work introduces a sequential convex programming framework for non-linear, finitedimensional stochastic optimal control, where uncertainties are modeled by a multidimensional Wiener process. We prove that any accumulation point of the sequence of iterates generated by sequential convex programming is a candidate locally-optimal solution for the original problem in the sense of the stochastic Pontryagin Maximum Principle. Moreover, we provide sufficient conditions for the existence of at least one such accumulation point. We then leverage these properties to design a practical numerical method for solving non-linear stochastic optimal control problems based on a deterministic transcription of stochastic sequential convex programming.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/cocv/2022060
Classification : 49K40, 65C30, 93E20
Keywords: Nonlinear stochastic optimal controlsequential convex programmingconvergence of Pontryagin extremal snumerical deterministic reformulation
@article{COCV_2022__28_1_A64_0,
     author = {Bonalli, Riccardo and Lew, Thomas and Pavone, Marco},
     title = {Sequential convex programming for non-linear stochastic optimal control },
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {28},
     doi = {10.1051/cocv/2022060},
     mrnumber = {4498190},
     zbl = {1500.49014},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/cocv/2022060/}
}
TY  - JOUR
AU  - Bonalli, Riccardo
AU  - Lew, Thomas
AU  - Pavone, Marco
TI  - Sequential convex programming for non-linear stochastic optimal control 
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2022
VL  - 28
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/cocv/2022060/
DO  - 10.1051/cocv/2022060
LA  - en
ID  - COCV_2022__28_1_A64_0
ER  - 
%0 Journal Article
%A Bonalli, Riccardo
%A Lew, Thomas
%A Pavone, Marco
%T Sequential convex programming for non-linear stochastic optimal control 
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2022
%V 28
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2022060/
%R 10.1051/cocv/2022060
%G en
%F COCV_2022__28_1_A64_0
Bonalli, Riccardo; Lew, Thomas; Pavone, Marco. Sequential convex programming for non-linear stochastic optimal control. ESAIM: Control, Optimisation and Calculus of Variations, Tome 28 (2022), article no. 64. doi: 10.1051/cocv/2022060

[1] A. Agrachev and Y. Sachkov, Vol. 87 of Control theory from the geometric viewpoint. Springer Science & Business Media (2013). | MR

[2] M. Annunziato and A. Borzì, A Fokker-Planck control framework for multidimensional stochastic processes. J. Comput. Appl. Math. 237 (2013) 487–507. | MR | Zbl | DOI

[3] R. Bellman, Dynamic Programming. Princeton Univ. Press, Princeton, New Jersey (1957). | MR | Zbl

[4] Berret, Bastien, and F. Jean, Stochastic optimal open-loop control as a theory of force and impedance planning via muscle co-contraction. PLoS Comput. Biol. 16 (2020) e1007414. | DOI

[5] D. Bertsimas and D. B. Brown, Constrained stochastic LQC: a tractable approach. IEEE Trans Autom. Control 52 (2007) 1826–1841. | MR | Zbl | DOI

[6] C. Bes and S. Sethi, Solution of a class of stochastic linear-convex control problems using deterministic equivalents. J. Optim. Theory Appl. 62 (1989) 17–27. | MR | Zbl | DOI

[7] J. Betts, Survey of numerical methods for trajectory optimization, J. Guid. Control Dyn. 21 (1998) 193–207. | Zbl | DOI

[8] J.-M. Bismut, Linear quadratic optimal stochastic control with random coefficients. SIAM J. Control Optim. 14 (1976) 419–444. | MR | Zbl | DOI

[9] P. T. Boggs and J. W. Tolle, Sequential quadratic programming. Acta Numer. 4 (1995) 1–51. | MR | Zbl | DOI

[10] R. Bonalli, Optimal control of aerospace systems with control-state constraints and delays, Ph.D. thesis. Sorbonne Université (2018).

[11] R. Bonalli, B. Hérissé and E. Trélat, Analytical initialization of a continuation-based indirect method for optimal control of endo-atmospheric launch vehicle systems, in IFAC World Congress (2017). | Zbl

[12] R. Bonalli, B. Hérissé and E. Trélat, Solving Optimal Control Problems for Delayed Control-Affine Systems with Quadratic Cost by Numerical Continuation, in American Control Conference (2017). | Zbl

[13] R. Bonalli, B. Hérissé and E. Trélat, Continuity of Pontryagin extremals with respect to delays in nonlinear optimal control. SIAM J. Control Optim. 57 (2019) 1440–1466. | MR | Zbl | DOI

[14] R. Bonalli, B. Hérissé and E. Trélat, Optimal control of endo-atmospheric launch vehicle systems: geometric and computational issues. IEEE Trans. Autom. Control 65 (2019) 2418–2433. | MR | Zbl | DOI

[15] L. Bourdin and E. Trélat, Pontryagin maximum principle for finite dimensional nonlinear optimal control problem on time scales. SIAM J. Control Optim. 51 (2013) 3781–3813. | MR | Zbl | DOI

[16] A. Bryson, Applied optimal control: optimization, estimation and control. CRC Press (1975). | MR

[17] R. Carmona, vol. 1 of Lectures on BSDEs, stochastic control, and stochastic differential games with financial applications. SIAM (2016). | MR | Zbl

[18] Y. Chitour, F. Jean and E. Trelat, Singular trajectories of control-ane systems. SIAM J. Control Optim. 47 (2008) 1078–1095. | MR | Zbl | DOI

[19] Damm, Tobias, H. Mena, and T. Stillfjord, Numerical solution of the finite horizon stochastic linear quadratic control problem. Numer. Linear Algebra Appl. 24 (2017) e2091. | MR | Zbl | DOI

[20] M. Diehl and F. Messerer, Local convergence of generalized Gauss-Newton and sequential convex programming, in Conference on Decision and Control (2019).

[21] Q. T. Dinh and M. Diehl, Local convergence of sequential convex programming for nonconvex optimization, in Recent Advances in Optimization and its Applications in Engineering. Springer (2010) 93–102.

[22] H. Frankowska, H. Zhang and X. Zhang, Stochastic optimal control problems with control and initial-final states constraints. SIAM J. Control Optim. 56 (2018) 1823–1855. | MR | Zbl | DOI

[23] R. Gamkrelidze, Principles of optimal control theory, vol. 7. Springer Science & Business Media (2013). | MR | Zbl

[24] E. Gobet, Monte-Carlo methods and stochastic processes: from linear to non-linear. CRC Press (2016). | MR | Zbl | DOI

[25] T. Haberkorn and E. Tréelat, Convergence results for smooth regularizations of hybrid nonlinear optimal control problems. SIAM J. Control Optim. 49 (2011) 1498–1522. | MR | Zbl | DOI

[26] O. Kazuhide, M. Goldshtein and P. Tsiotras, Optimal covariance control for stochastic systems under chance constraints. IEEE Control Syst. Lett. 2 (2018) 266–271. | MR | DOI

[27] P. Kleindorfer and K. Glover, Linear convex stochastic optimal control with applications in production planning. IEEE Trans. Autom. Control 18 (1973) 56–59. | MR | Zbl | DOI

[28] D. Kuhn, W. Wiesemann and A. Georghiou, Primal and dual linear decision rules in stochastic and robust optimization. Math. Program. 130 (2011) 177–209. | MR | Zbl | DOI

[29] H. J. Kushner, Numerical methods for stochastic control problems in continuous time. SIAM J. Control Optim. 28 (1990) 999–1048. | MR | Zbl | DOI

[30] H. J. Kushner and L. F. Martins, Numerical methods for stochastic singular control problems. SIAM J. Control Optim. 29 (1991) 1443–1475. | MR | Zbl | DOI

[31] H. J. Kushner and F. C. Schweppe, A maximum principle for stochastic control systems. J. Math. Anal. Appl. 8 (1964) 287–302. | MR | Zbl | DOI

[32] J.-F. Le Gall, vol. 274 of Brownian motion, martingales, and stochastic calculus. Springer (2016). | MR | Zbl

[33] T. Levajkoviéc, H. Mena and L.-M. Pfurtscheller, Solving stochastic LQR problems by polynomial chaos. IEEE Control Syst. Lett. 2 (2018) 641–646. | MR | DOI

[34] T. Lew, R. Bonalli and M. Pavone, Chance-constrained sequential convex programming for robust trajectory optimization, in European Control Conference (2020).

[35] P.-L. Lions, Optimal control of diffusion processes and Hamilton-Jacobi-Bellman equations, Part I. Commun. Partial Differ. Equ. 8 (1983) 1101–1174. | MR | Zbl | DOI

[36] Z. Lu, Sequential Convex Programming Methods for A Class of Structured Nonlinear Programming. Tech. rep. (2013).

[37] Y. Mao, D. Dueri, M. Szmuk and B. Açikmese, Successive convexification of non-convex optimal control problems with state constraints. IFAC-PapersOnLine 50 (2017) 4063–4069. | DOI

[38] P. S. Maybeck, Stochastic models, estimation, and control. Academic Press (1982). | MR | Zbl

[39] J. Nocedal and S. Wright, Numerical Optimization. Springer (1999). | MR | Zbl | DOI

[40] F. Palacios-Gomez, L. Lasdon and M. Engquist, Nonlinear optimization by successive linear programming. Manag. Sci. 28 (1982) 1106–1120. | Zbl | DOI

[41] S. Peng, A general stochastic maximum principle for optimal control problems. SIAM J. Control Optim. 28 (1990) 966–979. | MR | Zbl | DOI

[42] S. Peng, Stochastic Hamilton-Jacobi-Bellman equations. SIAM J. Control Optim. 30 (1992) 284–304. | MR | Zbl | DOI

[43] L. Pontryagin, Mathematical theory of optimal processes. Routledge (2018). | DOI

[44] J. Potter, A matrix equation arising in statistical filter theory. Rep. RE-9, Experimental Astronomy Laboratory, Massachusetts Institute of Technology (1965).

[45] M. A. Rami and X. Y. Zhou, Linear matrix inequalities, Riccati equations, and indefinite stochastic linear quadratic controls. IEEE Trans. Autom. Control 45 (2000) 1131–1143. | MR | Zbl | DOI

[46] R. T. Rockafellar and R. J. B. Wets, Generalized linear-quadratic problems of deterministic and stochastic optimal control in discrete time. SIAM J. Control Optim. 28 (1990) 810–822. | MR | Zbl | DOI

[47] A. Shapiro and A. Nemirovski, On complexity of stochastic programming problems, in Continuous optimization. Springer (2005) pp. 111–146. | MR | Zbl | DOI

[48] I. A. Shvartsman and R. B. Vinter, Regularity properties of optimal controls for problems with time-varying state and control constraints. Nonlinear Anal.: Theory, Methods Appl. 65 (2006) 448–474. | MR | Zbl | DOI

[49] S. Tang, General linear quadratic optimal stochastic control problems with random coefficients: linear stochastic Hamilton systems and backward stochastic Riccati equations. SIAM J. Control Optim. 42 (2003) 53–75. | MR | Zbl | DOI

[50] E. Trélat, Some properties of the value function and its level sets for affine control systems with quadratic cost. J. Dyn. Control Syst. 6 (2000) 511–541. | MR | Zbl | DOI

[51] E. Trélat, Optimal control and applications to aerospace: some results and challenges. J. Optim. Theory Appl. 154 (2012) 713–758. | MR | Zbl | DOI

[52] Y. Wang, D. Yang, J. Yong and Z. Yu, Exact controllability of linear stochastic differential equations and related problems. Am. Inst. Math. Sci. 7 (2017) 305–345. | MR | Zbl

[53] D. D. Yao, S. Zhang and X. Y. Zhou, Stochastic linear-quadratic control via semidefinite programming. SIAM J. Control Optim. 40 (2001) 801–823. | MR | Zbl | DOI

[54] J. Yong and X. Y. Zhou, Vol. 43 of Stochastic controls: Hamiltonian systems and HJB equations. Springer Science & Business Media (1999). | MR | Zbl

Cité par Sources :

This research was supported by the National Science Foundation under the CPS program (grant #1931815).