Null Controllability of the Parabolic Spherical Grushin Equation
ESAIM: Control, Optimisation and Calculus of Variations, Tome 28 (2022), article no. 70

We investigate the null controllability property of the parabolic equation associated with the Grushin operator defined by the canonical almost-Riemannian structure on the 2-dimensional sphere 𝕊2. This is the natural generalization of the Grushin operator 𝒢 = ∂x2 + x2y2 on ℝ2 to this curved setting and presents a degeneracy at the equator of 𝕊2. We prove that the null controllability is verified in large time when the control acts as a source term distributed on a subset ω̅ = {(x1, x2, x3) ∈ 𝕊2 | α < | x3 | < β} for some 0 ≤ α < β ≤ 1. More precisely, we show the existence of a positive time T* > 0 such that the system is null controllable from ω̅ in any time T ≥ T*, and that the minimal time of control from ω̅ satisfies Tmin ≥ log(1/√(1 - α2)) . Here, the lower bound corresponds to the Agmon distance of ω̅ from the equator. These results are obtained by proving a suitable Carleman estimate using unitary transformations and Hardy-Poincaré type inequalities to show the positive null-controllability result. The negative statement is proved by exploiting an appropriate family of spherical harmonics, concentrating at the equator, to falsify the uniform observability inequality.

DOI : 10.1051/cocv/2022055
Classification : 93B05, 93B07, 93C20, 53C17
Keywords: Null controllability, Carleman estimates, singular/degenerate parabolic equations, Hardy-Poincaré type inequalities, Grushin operator, unitary transformation, spherical harmonics, almost-Riemannian geometry
@article{COCV_2022__28_1_A70_0,
     author = {Tamekue, Cyprien},
     title = {Null {Controllability} of the {Parabolic} {Spherical} {Grushin} {Equation}},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {28},
     doi = {10.1051/cocv/2022055},
     mrnumber = {4512971},
     zbl = {1511.93022},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/cocv/2022055/}
}
TY  - JOUR
AU  - Tamekue, Cyprien
TI  - Null Controllability of the Parabolic Spherical Grushin Equation
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2022
VL  - 28
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/cocv/2022055/
DO  - 10.1051/cocv/2022055
LA  - en
ID  - COCV_2022__28_1_A70_0
ER  - 
%0 Journal Article
%A Tamekue, Cyprien
%T Null Controllability of the Parabolic Spherical Grushin Equation
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2022
%V 28
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2022055/
%R 10.1051/cocv/2022055
%G en
%F COCV_2022__28_1_A70_0
Tamekue, Cyprien. Null Controllability of the Parabolic Spherical Grushin Equation. ESAIM: Control, Optimisation and Calculus of Variations, Tome 28 (2022), article no. 70. doi: 10.1051/cocv/2022055

[1] A.A. Agrachev, U. Boscain and M. Sigalotti, A gauss-bonnet-like formula on two-dimensional almost-Riemannian manifolds. Discrete Contin. Dyn. Syst.-A 20 (2007) 801–822. | MR | Zbl | DOI

[2] M.S. Baouendi, Sur une classe d’opérateurs elliptiques dégénérés. Bul. Soc. Math. France 79 (1967) 45–87. | MR | Zbl | Numdam | DOI

[3] K. Beauchard, P. Cannarsa and R. Guglielmi, Null controllability of Grushin-type operators in dimension two. J. Eur. Math. Soc. 16 (2013) 67–101. | MR | Zbl | DOI

[4] K. Beauchard, J. Dardé and S. Ervedoza, Minimal time issues for the observability of Grushin-type equations. Ann. l'Institut Fourier 70 (2020) 247–312. | MR | Zbl | Numdam | DOI

[5] K. Beauchard, L. Miller and M. Morancey, 2d Grushin-type equations: Minimal time and null controllable data. J. Differ. Equ. 259 (2015) 5813–5845. | MR | Zbl | DOI

[6] M. Berger and B. Gostiaux, vol. 115 of Differential Geometry: Manifolds, Curves, and Surfaces: Manifolds, Curves, and Surfaces. Springer Science & Business Media (2012). | Zbl | MR

[7] U. Biccari and E. Zuazua, Null controllability for a heat equation with a singular inverse-square potential involving the distance to the boundary function. J. Differ. Equ. 261 (2016) 2809–2853. | MR | Zbl | DOI

[8] U. Boscain and C. Laurent, The Laplace-Beltrami operator in almost-Riemannian Geometry. Ann. inst. Fourier 63 (2013) 1739–1770. | MR | Zbl | Numdam | DOI

[9] U. Boscain, D. Prandi and M. Seri, Spectral analysis and the Aharonov-Bohm effect on certain almost-Riemannian manifolds. Commun. Partial Differ. Equ. 41 (2016) 32–50. | MR | Zbl | DOI

[10] P. Cannarsa and R. Guglielmi, Null controllability in large time for the parabolic Grushin operator with singular potential. Geometric control theory and sub-Riemannian geometry, Springer (2014) 87–102. | MR | Zbl | DOI

[11] V. Casarino, P. Ciatti and A. Martini, From refined estimates for spherical harmonics to a sharp multiplier theorem on the Grushin sphere. Adv. Math. 350 (2019) 816–859. | MR | Zbl | DOI

[12] C. Cazacu, Controllability of the heat equation with an inverse-square potential localized on the boundary. SIAM J. Control Optim. 52 (2014) 2055–2089. | MR | Zbl | DOI

[13] R. Chisholm and W. Everitt, XIV.-On bounded integral operators in the space of integrable-square functions. Proc. Sect. A: Math. Phys. Sci. 69 (1971) 199–204. | MR | Zbl

[14] J.-M. Coron, Control and nonlinearity. American Mathematical Society, Providence, R.I. (2007). | MR | Zbl

[15] S. Ervedoza, Control and stabilization properties for a singular heat equation with an inverse-square potential. Commun. Part. Diff. Equ. 33 (2008) 1996–2019. | MR | Zbl | DOI

[16] W. Everitt, A note on the self-adjoint domains of second-order differential equations. Q. Jl Math. 14 (1963) 41–45. | MR | Zbl | DOI

[17] A. Fursikov and O.Y. Imanuvilov, Controllability of evolution equations. Lecture Notes Series, vol. 34, Seoul National University Research Institute of Mathematics, Global Analysis Research Center, Seoul, MR 1406566 (97g:93002) (1996). | MR | Zbl

[18] V. Grushin, On a class of hypoelliptic operators. Math. USSR Sb. 12 (1970) 458–476. | Zbl | MR | DOI

[19] L. Hörmander, Hypoelliptic second order differential equations. Acta Math. 119 (1967) 147–171. | MR | Zbl | DOI

[20] O. Y. Imanuilov, Controllability of parabolic equations. Sb. Math. 186 (1995) 879–900. | MR | Zbl | DOI

[21] A. Koenig, Non-null-controllability of the Grushin operator in 2D. Comp. Rendus Math. 355 (2017) 1215–1235. | Zbl | MR | DOI

[22] G. Lebeau and L. Robbiano, Contrôle Exact De L’équation De La Chaleur. Commun. Part. Diff. Equ. 20 (1995) 335–356. | MR | Zbl | DOI

[23] J.-L. Lions, Contrôlabilité exacte perturbations et stabilisation de systèèmes distribués (Tome 1, Contrôlabilité exacte. Tome 2, Perturbations), recherches en mathematiques appliquées, Masson (1988). | MR | Zbl

[24] P. Martinez and J. Vancostenoble, Carleman estimates for one-dimensional degenerate heat equations. J. Evol. Equ. 6 (2006) 325–362. | MR | Zbl | DOI

[25] M. Morancey, Approximate controllability for a 2D Grushin equation with potential having an internal singularity. Ann. Inst. Fourier 65 (2015) 1525–1556. | MR | Zbl | Numdam | DOI

[26] M. A. Naımark, Linear differential operators. vol. II Ungar, New York (1968). | MR | Zbl

[27] B. Opic and A. Kufner, Hardy-Type Inequalities. Longman Scientific and Technical, Harlow, UK (1990). | MR | Zbl

[28] A. Pazy, Semi-groups of linear operators and applications to partial differential equations, Applied Math. Sciences 44, Springer, New York (2012). | MR | Zbl

[29] E. Stein and G. Weiss, Introduction to Fourier analysis on Euclidean spaces. Princeton University Press, Princeton, NJ (1971). | MR | Zbl

[30] R. S. Strichartz, Analysis of the Laplacian on the complete Riemannian manifold. J. Funct. Anal. 52 (1983) 48–79. | MR | Zbl | DOI

[31] R. S. Strichartz, Sub-Riemannian geometry. J. Differ. Geom. 24 (1986) 221–263. | MR | Zbl

[32] Y. C. De Verdiere, L. Hillairet and E. Trélat, Spectral asymptotics for sub-RiemannianLaplacians, I: Quantum ergodicity and quantum limits in the 3-dimensional contact case. Duke Math. J. 167 (2018). | MR | Zbl

Cité par Sources :

This work was supported by a grant from the “Fondation CFM pour la Recherche”. It was also partially supported by the iCODE Institute, research project of the IDEXParis-Saclay.