In this paper, we give a general maximum principle for optimal controls of stochastic systems driven by Markov chains. The control is allowed to enter both diffusion and jump terms and the control domain is not necessarily convex. We apply a new spike variation and the stochastic integral of progressive processes to obtain the main result.
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/cocv/2022054
Keywords: The maximum principle, Markov chain, regime-switching, spike variation
@article{COCV_2022__28_1_A61_0,
author = {Song, Yuanzhuo and Wu, Zhen},
title = {A general maximum principle for progressive optimal stochastic control problems with {Markov} regime-switching},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
year = {2022},
publisher = {EDP-Sciences},
volume = {28},
doi = {10.1051/cocv/2022054},
mrnumber = {4481117},
zbl = {1503.93051},
language = {en},
url = {https://www.numdam.org/articles/10.1051/cocv/2022054/}
}
TY - JOUR AU - Song, Yuanzhuo AU - Wu, Zhen TI - A general maximum principle for progressive optimal stochastic control problems with Markov regime-switching JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2022 VL - 28 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/cocv/2022054/ DO - 10.1051/cocv/2022054 LA - en ID - COCV_2022__28_1_A61_0 ER -
%0 Journal Article %A Song, Yuanzhuo %A Wu, Zhen %T A general maximum principle for progressive optimal stochastic control problems with Markov regime-switching %J ESAIM: Control, Optimisation and Calculus of Variations %D 2022 %V 28 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/cocv/2022054/ %R 10.1051/cocv/2022054 %G en %F COCV_2022__28_1_A61_0
Song, Yuanzhuo; Wu, Zhen. A general maximum principle for progressive optimal stochastic control problems with Markov regime-switching. ESAIM: Control, Optimisation and Calculus of Variations, Tome 28 (2022), article no. 61. doi: 10.1051/cocv/2022054
[1] , vol. 261 of Probability and stochastics. Springer, New York (2011). | MR | Zbl | DOI
[2] and , Solutions of backward stochastic differential equations on Markov chains. Commun. Stoch. Anal. 2 (2008) 251–262. | MR | Zbl
[3] , Sufficient stochastic maximum principle in a regime-switching diffusion model. Appl. Math Optim. 64 (2011) 155–169. | MR | Zbl | DOI
[4] , and , Semimartingale Theory and Stochastic Calculus. Routledge, Abingdon, UK (2018). | Zbl
[5] , Vol. 274 of Brownian motion, Martingales, and Stochastic Calculus. Springer, New York (2016). | MR | Zbl | DOI
[6] and , Stochastic maximum principle for forward-backward regime switching jump diffusion systems and applications to finance. Chin. Ann. Math. Ser. B 39 (2018) 773–790. | MR | Zbl | DOI
[7] , A general stochastic maximum principle for optimal control problems. SIAM J.Control Optim. 28 (1990) 966–979. | MR | Zbl | DOI
[8] , Stochastic Integration and Differential Equations. Springer, Heidelberg (2005). | DOI
[9] , and , The maximum priniple for progressive optimal stochastic control problems with random jumps. SIAM J. Control Optim. 58 (2020) 2171–2187. | MR | Zbl | DOI
[10] and , Necessary conditions for optimal control of stochastic systems with random jumps. SIAM J.Control Optim. 32 (1994) 1447–1475. | MR | Zbl | DOI
[11] and , Maximum principle for optimal control problems of forward-backward regime-switching system and applications. Syst. Control Lett. 61 (2012) 911–917. | MR | Zbl | DOI
[12] , Introduction to Martingales and Stochastic Integrals. Shanghai Sci. and Tech. Publ. House, Shanghai (1981). | MR
[13] , Stock trading: An optimal selling rule. SIAM J. Control. Optim. 40 (2001) 64–87. | MR | Zbl | DOI
[14] , and , A stochastic maximum principle for a Markov regime-switching jump-diffusion model and its application to finance. SIAM J. Control Optim. 50 (2012) 964–990. | MR | Zbl | DOI
[15] , and , A general stochastic maximum principle for a Markov regime switching jump-diffusion model of mean-field type. SIAM J. Control. Optim. 56 (2018) 2563–2592. | MR | Zbl | DOI
Cité par Sources :
This work was supported by the Natural Science Foundation of China (11831010, 61961160732), Shandong Provincial Natural Science Foundation (ZR2019ZD42) and the Taishan Scholars Climbing Program of Shandong (No. TSPD20210302).





