The relaxed area of 𝕊 1 -valued singular maps in the strict B V -convergence
ESAIM: Control, Optimisation and Calculus of Variations, Tome 28 (2022), article no. 56

Given a bounded open set Ω ⊂ ℝ2, we study the relaxation of the nonparametric area functional in the strict topology in BV(Ω; ℝ2). and compute it for vortex-type maps, and more generally for maps in W1,1(Ω;S1) having a finite number of topological singularities. We also extend the analysis to some specific piecewise constant maps in BV(Ω;S1), including the symmetric triple junction map.

DOI : 10.1051/cocv/2022049
Classification : 49J45, 49Q05, 49Q15, 28A75
Keywords: Area functional, relaxation, Cartesian currents, total variation of the Jacobian, S1-valued singular maps
@article{COCV_2022__28_1_A56_0,
     author = {Bellettini, Giovanni and Carano, Simone and Scala, Riccardo},
     title = {The relaxed area of $\mathbf{\ensuremath{\mathbb{S}}}^1$-valued singular maps in the strict $BV$-convergence},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {28},
     doi = {10.1051/cocv/2022049},
     mrnumber = {4469492},
     zbl = {1504.49030},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/cocv/2022049/}
}
TY  - JOUR
AU  - Bellettini, Giovanni
AU  - Carano, Simone
AU  - Scala, Riccardo
TI  - The relaxed area of $\mathbf{𝕊}^1$-valued singular maps in the strict $BV$-convergence
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2022
VL  - 28
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/cocv/2022049/
DO  - 10.1051/cocv/2022049
LA  - en
ID  - COCV_2022__28_1_A56_0
ER  - 
%0 Journal Article
%A Bellettini, Giovanni
%A Carano, Simone
%A Scala, Riccardo
%T The relaxed area of $\mathbf{𝕊}^1$-valued singular maps in the strict $BV$-convergence
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2022
%V 28
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2022049/
%R 10.1051/cocv/2022049
%G en
%F COCV_2022__28_1_A56_0
Bellettini, Giovanni; Carano, Simone; Scala, Riccardo. The relaxed area of $\mathbf{𝕊}^1$-valued singular maps in the strict $BV$-convergence. ESAIM: Control, Optimisation and Calculus of Variations, Tome 28 (2022), article no. 56. doi: 10.1051/cocv/2022049

[1] E. Acerbi and G. Dal Maso, New lower semicontinuity results for polyconvex integrals. Calc. Var. Partial Differ. Equ. 2 (1994) 329–371. | MR | Zbl | DOI

[2] L. Ambrosio, N. Fusco and D. Pallara, “Functions of Bounded Variation and Free Discontinuity Problems”, Oxford Mathematical Monographs. Oxford University Press, New York (2000). | MR | Zbl

[3] G. Bellettini, A. Elshorbagy, M. Paolini and R. Scala, On the relaxed area of the graph of discontinuous maps from the plane to the plane taking three values with no symmetry assumptions. Ann. Mat. Pura Appi. 199 (2020) 445—477. | MR | Zbl | DOI

[4] G. Bellettini, A. Elshorbagy and R. Scala, The L 1 -relaxed area of the graph of the vortex map. Preprint (2021). | arXiv | MR | Zbl

[5] G. Bellettini, R. Marziani and R. Scala, A non-parametric Plateau problem with partial free boundary. Preprint (2022). | arXiv | MR | Zbl

[6] G. Bellettini and M. Paolini, On the area of the graph of a singular map from the plane to the plane taking three values. Adv. Calc. Var. 3 (2010) 371–386. | MR | Zbl | DOI

[7] G. Bellettini, M. Paolini and L. Tealdi, On the area of the graph of a piecewise smooth map from the plane to the plane with a curve discontinuity. ESAIM: COCV 22 (2015) 29–63. | MR | Zbl | Numdam

[8] G. Bellettini, M. Paolini and L. Tealdi, Semicartesian surfaces and the relaxed area of maps from the plane to the plane with a line discontinuity. Ann. Mat. Pura Appi. 195 (2016) 2131–2170. | MR | Zbl | DOI

[9] H. Brezis, P. Mironescu and A. Ponce, W 1 ; 1 -maps with values into S 1 . Geometric analysis of PDE and several complex variables, 69—100, Contemp. Math., 368, Amer. Math. Soc., Providence, RI (2005). | MR | Zbl | DOI

[10] G. Dal Maso, Integral representation on BV ( Ω ) of Γ -limits of variational integrals. Manuscr. Math. 30 (1980) 387–416. | MR | Zbl | DOI

[11] E. De Giorgi, On the relaxation of functionals defined on cartesian manifolds. In “Developments in Partial Differential Equations and Applications in Mathematical Physics” (Ferrara 1992). Plenum Press, New York (1992). | MR | Zbl

[12] G. De Philippis, Weak notions of Jacobian determinant and relaxation. ESAIM: COCV 18 (2012) 181–207. | MR | Zbl | Numdam

[13] M. Giaquinta, G. Modica and J. Souček, “Cartesian Currents in the Calculus of Variations I”, Vol. 37 of Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer-Verlag, Berlin-Heidelberg (1998). | MR | Zbl

[14] M. Giaquinta, G. Modica and J. SouÄŤek, Cartesian Currents in the Calculus of Variations II. Variational Integrals. Vol. 38 of Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer-Verlag, Berlin-Heidelberg (1998). | MR | Zbl

[15] E. Giusti, Minimal Surfaces and Functions of Bounded Variation. Birkhäuser, Boston (1984). | MR | Zbl | DOI

[16] C. Hamburger, Some properties of the degree for a class of Sobolev maps. Proc: Math. Phys. Eng. Sci. 455 (1999) 2331–2349. | MR | Zbl

[17] R. L. Jerrard and H. M. Soner, Functions of bounded higher variation. Indiana Univ. Math. J. 51 (2002) 645–677. | MR | Zbl | DOI

[18] S. Muller, T. Qi and B. S. Yan, Ona new class of elastic deformations not allowing for cavitation. Inst. H. Poincaré Anal. Non Linéaire 11 (1994) 217–243. | MR | Zbl | Numdam | DOI

[19] P. Mironescu, Sobolev maps on manifolds: degree, approximation, lifting. Perspectives in nonlinear partial differential equations. Contemp. Math. 446 (2007) 413–436. | MR | Zbl | DOI

[20] E. Paolini, On the relaxed total variation of singular maps. Manuscr. Math. 111 (2003) 499–512. | MR | Zbl | DOI

[21] A. C. Ponce and J. Van Schaftingen, Clousure of smooth maps in W 1 , p ( B 3 , S 2 ) . Differ. Integr. Equ. 22 (2009) 881–900. | MR | Zbl

[22] R. Scala, Optimal estimates for the triple junction function and other surprising aspects of the area functional. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 20 (2020) 491–564. | MR | Zbl

Cité par Sources :

We acknowledge the financial support of the GNAMPA of INdAM (Italian institute of high mathematics).