Given a bounded open set Ω ⊂ ℝ2, we study the relaxation of the nonparametric area functional in the strict topology in BV(Ω; ℝ2). and compute it for vortex-type maps, and more generally for maps in W1,1(Ω;S1) having a finite number of topological singularities. We also extend the analysis to some specific piecewise constant maps in BV(Ω;S1), including the symmetric triple junction map.
Keywords: Area functional, relaxation, Cartesian currents, total variation of the Jacobian, S1-valued singular maps
@article{COCV_2022__28_1_A56_0,
author = {Bellettini, Giovanni and Carano, Simone and Scala, Riccardo},
title = {The relaxed area of $\mathbf{\ensuremath{\mathbb{S}}}^1$-valued singular maps in the strict $BV$-convergence},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
year = {2022},
publisher = {EDP-Sciences},
volume = {28},
doi = {10.1051/cocv/2022049},
mrnumber = {4469492},
zbl = {1504.49030},
language = {en},
url = {https://www.numdam.org/articles/10.1051/cocv/2022049/}
}
TY - JOUR
AU - Bellettini, Giovanni
AU - Carano, Simone
AU - Scala, Riccardo
TI - The relaxed area of $\mathbf{𝕊}^1$-valued singular maps in the strict $BV$-convergence
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2022
VL - 28
PB - EDP-Sciences
UR - https://www.numdam.org/articles/10.1051/cocv/2022049/
DO - 10.1051/cocv/2022049
LA - en
ID - COCV_2022__28_1_A56_0
ER -
%0 Journal Article
%A Bellettini, Giovanni
%A Carano, Simone
%A Scala, Riccardo
%T The relaxed area of $\mathbf{𝕊}^1$-valued singular maps in the strict $BV$-convergence
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2022
%V 28
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2022049/
%R 10.1051/cocv/2022049
%G en
%F COCV_2022__28_1_A56_0
Bellettini, Giovanni; Carano, Simone; Scala, Riccardo. The relaxed area of $\mathbf{𝕊}^1$-valued singular maps in the strict $BV$-convergence. ESAIM: Control, Optimisation and Calculus of Variations, Tome 28 (2022), article no. 56. doi: 10.1051/cocv/2022049
[1] and , New lower semicontinuity results for polyconvex integrals. Calc. Var. Partial Differ. Equ. 2 (1994) 329–371. | MR | Zbl | DOI
[2] , and , “Functions of Bounded Variation and Free Discontinuity Problems”, Oxford Mathematical Monographs. Oxford University Press, New York (2000). | MR | Zbl
[3] , , and , On the relaxed area of the graph of discontinuous maps from the plane to the plane taking three values with no symmetry assumptions. Ann. Mat. Pura Appi. 199 (2020) 445—477. | MR | Zbl | DOI
[4] , and , The -relaxed area of the graph of the vortex map. Preprint (2021). | arXiv | MR | Zbl
[5] , and , A non-parametric Plateau problem with partial free boundary. Preprint (2022). | arXiv | MR | Zbl
[6] and , On the area of the graph of a singular map from the plane to the plane taking three values. Adv. Calc. Var. 3 (2010) 371–386. | MR | Zbl | DOI
[7] , and , On the area of the graph of a piecewise smooth map from the plane to the plane with a curve discontinuity. ESAIM: COCV 22 (2015) 29–63. | MR | Zbl | Numdam
[8] , and , Semicartesian surfaces and the relaxed area of maps from the plane to the plane with a line discontinuity. Ann. Mat. Pura Appi. 195 (2016) 2131–2170. | MR | Zbl | DOI
[9] , and , -maps with values into . Geometric analysis of PDE and several complex variables, 69—100, Contemp. Math., 368, Amer. Math. Soc., Providence, RI (2005). | MR | Zbl | DOI
[10] , Integral representation on of -limits of variational integrals. Manuscr. Math. 30 (1980) 387–416. | MR | Zbl | DOI
[11] , On the relaxation of functionals defined on cartesian manifolds. In “Developments in Partial Differential Equations and Applications in Mathematical Physics” (Ferrara 1992). Plenum Press, New York (1992). | MR | Zbl
[12] , Weak notions of Jacobian determinant and relaxation. ESAIM: COCV 18 (2012) 181–207. | MR | Zbl | Numdam
[13] , and , “Cartesian Currents in the Calculus of Variations I”, Vol. 37 of Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer-Verlag, Berlin-Heidelberg (1998). | MR | Zbl
[14] , and , Cartesian Currents in the Calculus of Variations II. Variational Integrals. Vol. 38 of Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer-Verlag, Berlin-Heidelberg (1998). | MR | Zbl
[15] , Minimal Surfaces and Functions of Bounded Variation. Birkhäuser, Boston (1984). | MR | Zbl | DOI
[16] , Some properties of the degree for a class of Sobolev maps. Proc: Math. Phys. Eng. Sci. 455 (1999) 2331–2349. | MR | Zbl
[17] and , Functions of bounded higher variation. Indiana Univ. Math. J. 51 (2002) 645–677. | MR | Zbl | DOI
[18] , and , Ona new class of elastic deformations not allowing for cavitation. Inst. H. Poincaré Anal. Non Linéaire 11 (1994) 217–243. | MR | Zbl | Numdam | DOI
[19] , Sobolev maps on manifolds: degree, approximation, lifting. Perspectives in nonlinear partial differential equations. Contemp. Math. 446 (2007) 413–436. | MR | Zbl | DOI
[20] , On the relaxed total variation of singular maps. Manuscr. Math. 111 (2003) 499–512. | MR | Zbl | DOI
[21] and , Clousure of smooth maps in . Differ. Integr. Equ. 22 (2009) 881–900. | MR | Zbl
[22] , Optimal estimates for the triple junction function and other surprising aspects of the area functional. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 20 (2020) 491–564. | MR | Zbl
Cité par Sources :
We acknowledge the financial support of the GNAMPA of INdAM (Italian institute of high mathematics).





