Existence and stability results for an isoperimetric problem with a non-local interaction of Wasserstein type
ESAIM: Control, Optimisation and Calculus of Variations, Tome 28 (2022), article no. 37

The aim of this paper is to prove the existence of minimizers for a variational problem involving the minimization under volume constraint of the sum of the perimeter and a non-local energy of Wasserstein type. This extends previous partial results to the full range of parameters. We also show that in the regime where the perimeter is dominant, the energy is uniquely minimized by balls.

DOI : 10.1051/cocv/2022040
Classification : 49Q05, 49Q20, 49Q22
Keywords: Non-local isoperimetric problem, optimal transport, existence of minimizers
@article{COCV_2022__28_1_A37_0,
     author = {Candau-Tilh, Jules and Goldman, Michael},
     title = {Existence and stability results for an isoperimetric problem with a non-local interaction of {Wasserstein} type},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {28},
     doi = {10.1051/cocv/2022040},
     mrnumber = {4438713},
     zbl = {1526.49026},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/cocv/2022040/}
}
TY  - JOUR
AU  - Candau-Tilh, Jules
AU  - Goldman, Michael
TI  - Existence and stability results for an isoperimetric problem with a non-local interaction of Wasserstein type
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2022
VL  - 28
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/cocv/2022040/
DO  - 10.1051/cocv/2022040
LA  - en
ID  - COCV_2022__28_1_A37_0
ER  - 
%0 Journal Article
%A Candau-Tilh, Jules
%A Goldman, Michael
%T Existence and stability results for an isoperimetric problem with a non-local interaction of Wasserstein type
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2022
%V 28
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2022040/
%R 10.1051/cocv/2022040
%G en
%F COCV_2022__28_1_A37_0
Candau-Tilh, Jules; Goldman, Michael. Existence and stability results for an isoperimetric problem with a non-local interaction of Wasserstein type. ESAIM: Control, Optimisation and Calculus of Variations, Tome 28 (2022), article no. 37. doi: 10.1051/cocv/2022040

[1] E. Acerbi, N. Fusco and M. Morini, Minimality via second variation for a nonlocal isoperimetric problem. Commun. Math. Phys. 322 (2013) 515–557. | MR | Zbl | DOI

[2] G. Buttazzo, G. Carlier and M. Laborde, On the Wasserstein distance between mutually singular measures. Adv. Calc. Var. 13 (2020) 141–154. | MR | Zbl | DOI

[3] D. Carazzato, N. Fusco and A. Pratelli, Minimality of balls in the small volume regime for a general Gamow type functional (2020). | Zbl

[4] F. Cavalletti and S. Farinelli, Indeterminacy estimates and the size of nodal sets in singular spaces. Adv. Math. 389 (2021) Paper No. 107919, 38. | MR | Zbl | DOI

[5] R. Choksi, C. B. Muratov and I. Topaloglu, An old problem resurfaces nonlocally: Gamow’s liquid drops inspire today’s research and applications. Notices Amer. Math. Soc. 64 (2017) 1275–1283. | MR | Zbl | DOI

[6] M. Cicalese and G. P. Leonardi, A selection principle for the sharp quantitative isoperimetric inequality. Arch. Ration. Mech. Anal. 206 (2012) 617–643. | MR | Zbl | DOI

[7] G. De Philippis, A. R. Mészáros, F. Santambrogio and B. Velichkov, BV estimates in optimal transportation and applications. Arch. Rati. Mech. Anal. 219 (2015) 829–860. | MR | Zbl | DOI

[8] A. Figalli, N. Fusco, F. Maggi, V. Millot and M. Morini, Isoperimetry and stability properties of balls with respect to nonlocal energies. Commun. Math. Phys. 336 (2015) 441–507. | MR | Zbl | DOI

[9] R. L. Frank and E. H. Lieb, A compactness lemma and its application to the existence of minimizers for the liquid drop model. SIAM J. Math. Anal. 47 (2015) 4436–4450. | MR | Zbl | DOI

[10] R. L. Frank and P. T. Nam, Existence and nonexistence in the liquid drop model (2021). | MR | Zbl

[11] B. Fuglede, Stability in the isoperimetric problem for convex or nearly spherical domains in 𝐑 n . Trans. Am. Math. Soc. 314 (1989). | MR | Zbl

[12] M. Goldman and M. Novaga, Volume-constrained minimizers for the prescribed curvature problem in periodic media. Calc. Var. Partial Differ. Equ. 44 (2012) 297–318. | MR | Zbl | DOI

[13] M. Goldman, M. Novaga and B. Ruffini, Existence and stability for a non-local isoperimetric model of charged liquid drops. Arch. Ration. Mech. Anal. 217 (2015) 1–36. | MR | Zbl | DOI

[14] H. Knüpfer and C. B. Muratov, On an isoperimetric problem with a competing nonlocal term II: the general case. Commun. Pure Appl. Math. 67 (2014) 1974–1994. | MR | Zbl | DOI

[15] H. Knüpfer, C. B. Muratov and M. Novaga, Low density phases in a uniformly charged liquid. Commun. Math. Phys. 345 (2016) 141–183. | MR | Zbl | DOI

[16] F. Maggi, Sets of Finite Perimeter and Geometric Variational Problems: An Introduction to Geometric Measure Theory, Cambridge Studies in Advanced Mathematics. Cambridge University Press (2012). | MR | Zbl | DOI

[17] E. Mukoseeva and G. Vescovo, Minimality of the ball for a model of charged liquid droplets (2019). | Zbl

[18] M. Novack, I. Topaloglu and R. Venkatraman, Least Wasserstein distance between disjoint shapes with perimeter regularization. Preprints (2021). | arXiv | MR | Zbl

[19] M. Novaga and A. Pratelli, Minimisers of a general Riesz-type problem. Nonlinear Anal. 209 (2021) Paper No. 112346, 27. | MR | Zbl | DOI

[20] M. Pegon, Large mass minimizers for isoperimetric problems with integrable nonlocal potentials. Nonlinear Anal. 211 (2021) Paper No. 112395, 48. | MR | Zbl | DOI

[21] M. A. Peletier and M. Röger, Partial localization, lipid bilayers, and the elastica functional. Arch. Ration. Mech. Anal. 193 (2009) 475–537. | MR | Zbl | DOI

[22] S. Rigot, Ensembles quasi-minimaux avec contrainte de volume et rectifiabilité uniforme. Mém. Soc. Math. Fr. (N.S.) (2000) vi+104. | MR | Zbl | Numdam

[23] F. Santambrogio, Optimal transport for applied mathematicians. Vol. 87 of Progress in Nonlinear Differential Equations and their Applications. Birkhäuser/Springer, Cham (2015). | MR | Zbl | DOI

[24] C. Villani, Topics in optimal transportation. Vol. 58 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI (2003). | MR | Zbl

[25] Q. Xia and B. Zhou, The existence of minimizers for an isoperimetric problem with Wasserstein penalty term in unbounded domains. Adv. Calc. Variat. (2021) 000010151520200083. | MR | Zbl

Cité par Sources :