Typicality results for weak solutions of the incompressible Navier–Stokes equations
ESAIM: Control, Optimisation and Calculus of Variations, Tome 28 (2022), article no. 38

In this work we show that, in the class of L((0,T); L2(T3)) distributional solutions of the incompressible Navier-Stokes system, the ones which are smooth in some open interval of times are meagre in the sense of Baire category, and the Leray ones are a nowhere dense set.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/cocv/2022038
Classification : 35Q30, 35D30, 76B03, 26A21
Keywords: Iincompressible Navier-Stokes equations, nonsmooth distributional solutions, Leray solutions, convex integration, Baire category
@article{COCV_2022__28_1_A38_0,
     author = {Colombo, Maria and De Rosa, Luigi and Sorella, Massimo},
     title = {Typicality results for weak solutions of the incompressible {Navier{\textendash}Stokes} equations},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {28},
     doi = {10.1051/cocv/2022038},
     mrnumber = {4438714},
     zbl = {1492.35181},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/cocv/2022038/}
}
TY  - JOUR
AU  - Colombo, Maria
AU  - De Rosa, Luigi
AU  - Sorella, Massimo
TI  - Typicality results for weak solutions of the incompressible Navier–Stokes equations
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2022
VL  - 28
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/cocv/2022038/
DO  - 10.1051/cocv/2022038
LA  - en
ID  - COCV_2022__28_1_A38_0
ER  - 
%0 Journal Article
%A Colombo, Maria
%A De Rosa, Luigi
%A Sorella, Massimo
%T Typicality results for weak solutions of the incompressible Navier–Stokes equations
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2022
%V 28
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2022038/
%R 10.1051/cocv/2022038
%G en
%F COCV_2022__28_1_A38_0
Colombo, Maria; De Rosa, Luigi; Sorella, Massimo. Typicality results for weak solutions of the incompressible Navier–Stokes equations. ESAIM: Control, Optimisation and Calculus of Variations, Tome 28 (2022), article no. 38. doi: 10.1051/cocv/2022038

[1] E. Brué, M. Colombo and C. De Lellis, Positive solutions of transport equations and classical nonuniqueness of characteristic curves. Preprint [math.AP] (2020). | arXiv | MR | Zbl

[2] T. Buckmaster, M. Colombo and V. Vicol, Wild solutions of the Navier-Stokes equations whose singular sets in time have Hausdorff dimension strictly less than 1. Preprint [math.AP] (2020). | arXiv | MR | Zbl

[3] T. Buckmaster, C. De Lellis, L. Székelyhidi Jr. and V. Vicol, Onsager’s conjecture for admissible weak solutions. Comm. Pure Appl. Math. 72 (2019) 229–274. | MR | Zbl | DOI

[4] T. Buckmaster and V. Vicol, Nonuniqueness of weak solutions to the Navier-Stokes equation. Ann. Math. 189 (2019) 101–144. | MR | Zbl | DOI

[5] T. Buckmaster and V. Vicol, Convex integration and phenomenologies in turbulence. EMS Surv. Math. Sci. 6 (2019) 173–263. | MR | Zbl | DOI

[6] T. Buckmaster, S. Shkoller and V. Vicol, Nonuniqueness of weak solutions to the SQG equation. Commun. Pure Appl. Math. 72 (2019) 1809–1874. | MR | Zbl | DOI

[7] X. Cheng, H. Kwon and D. Li, Non-uniqueness of steady-state weak solutions to the surface quasi-geostrophic equations. Preprint [math.AP] (2020). | arXiv | MR

[8] A. Cheskidov and X. Luo, Stationary and discontinuous weak solutions of the Navier-Stokes equations. Preprint [math.AP] (2020). | arXiv

[9] M. Colombo, C. De Lellis and L. De Rosa, Ill-posedness of Leray solutions for the hypodissipative Navier-Stokes equations. Commun. Math. Phys. 362 (2018) 659–688. | MR | Zbl | DOI

[10] S. Daneri and L. Székelyhidijr., Non-uniqueness and h-principle for Hölder-continuous weak solutions of the Euler equations. Arch. Ratl. Mech. Anal. 224 (2017) 471–514. | MR | Zbl | DOI

[11] C. De Lellis and L. Székelyhidijr., The Euler equations as a differential inclusion. Ann. Math. 170 (2009) 1417–1436. | MR | Zbl | DOI

[12] C. De Lellis and L. Székelyhidijr., Dissipative continuous Euler flows. Invent. Math. 193 (2013) 377–407. | MR | Zbl | DOI

[13] C. De Lellis and L. Székelyhidijr., On h-principle and Onsager’s conjecture. Eur. Math. Soc. Newsl. 95 (2015) 19–24. | MR | Zbl

[14] C. De Lellis and L. Székelyhidijr., High dimensionality and h-principle in PDE. Bull. Amer. Math. Soc. (N.S.) 54 (2017) 247–282. | MR | Zbl | DOI

[15] L. De Rosa, Infinitely many Leray-Hopf solutions for the fractional Navier-Stokes equations. Commun. Partial Differ. Equ. 44 (2019) 335–365. | MR | Zbl | DOI

[16] L. De Rosa and R. Tione, Sharp energy regularity and typicality results for Holder solutions of incompressible Euler equations. Anal. PDE 15 (2022) 405–428. | MR | Zbl | DOI

[17] P. Isett, A proof of Onsager’s conjecture. Ann. Math. 188 (2018) 871–963. | MR | Zbl | DOI

[18] P. Isett and A. Ma, A direct approach to nonuniqueness and failure of compactness for the SQG equation. Preprint [math.AP] (2020). | arXiv | MR

[19] P. G. Lemarié-Rieusset, The Navier-Stokes problem in the 21st century. CRC Press, Boca Raton, FL (2016). | MR | DOI

[20] S. Modena and G. Sattig, Convex integration solutions to the transport equation with full dimensional concentration. Ann. Inst. H. Poincaré Anal. Non Linéaire 37 (2020) 1075–1108. | MR | Zbl | Numdam | DOI

[21] S. Modena and L. Székelyhidijr., Non-uniqueness for the transport equation with Sobolev vector fields. Ann. PDE 4 (2018) Paper No. 18, 38. | MR | Zbl | DOI

[22] S. Modena and L. Székelyhidijr., Non-renormalized solutions to the continuity equation. Calc. Var. Partial Differ. Equ. 58 (2019) Paper No. 208, 30. | MR | Zbl | DOI

Cité par Sources :