Topology optimization for quasistatic elastoplasticity
ESAIM: Control, Optimisation and Calculus of Variations, Tome 28 (2022), article no. 47

Topology optimization is concerned with the identification of optimal shapes of deformable bodies with respect to given target functionals. The focus of this paper is on a topology optimization problem for a time-evolving elastoplastic medium under kinematic hardening. We adopt a phase-field approach and argue by subsequent approximations, first by discretizing time and then by regularizing the flow rule. Existence of optimal shapes is proved both at the time-discrete and time-continuous level, independently of the regularization. First order optimality conditions are firstly obtained in the regularized time-discrete setting and then proved to pass to the nonregularized time-continuous limit. The phase-field approximation is shown to pass to its sharp-interface limit via an evolutive variational convergence argument.

DOI : 10.1051/cocv/2022037
Classification : 74C05, 74P10, 49Q10, 49J20, 49K20
Keywords: Topology optimization, elastoplasticity, first-order conditions
@article{COCV_2022__28_1_A47_0,
     author = {Almi, Stefano and Stefanelli, Ulisse},
     title = {Topology optimization for quasistatic elastoplasticity},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {28},
     doi = {10.1051/cocv/2022037},
     mrnumber = {4448808},
     zbl = {1495.74053},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/cocv/2022037/}
}
TY  - JOUR
AU  - Almi, Stefano
AU  - Stefanelli, Ulisse
TI  - Topology optimization for quasistatic elastoplasticity
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2022
VL  - 28
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/cocv/2022037/
DO  - 10.1051/cocv/2022037
LA  - en
ID  - COCV_2022__28_1_A47_0
ER  - 
%0 Journal Article
%A Almi, Stefano
%A Stefanelli, Ulisse
%T Topology optimization for quasistatic elastoplasticity
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2022
%V 28
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2022037/
%R 10.1051/cocv/2022037
%G en
%F COCV_2022__28_1_A47_0
Almi, Stefano; Stefanelli, Ulisse. Topology optimization for quasistatic elastoplasticity. ESAIM: Control, Optimisation and Calculus of Variations, Tome 28 (2022), article no. 47. doi: 10.1051/cocv/2022037

[1] G. Allaire, Shape optimization by the homogenization method. Vol. 146 of Applied Mathematical Sciences. Springer-Verlag, New York (2002). | MR | Zbl | DOI

[2] S. Almi and U. Stefanelli, Topology optimization for incremental elastoplasticity: a phase-field approach. SIAM J. Control Optim. 59 (2021) 339–364. | MR | Zbl | DOI

[3] M. P. Bendsoe and O. Sigmund, Topology optimization. Theory, methods and applications. Springer-Verlag, Berlin (2003). | MR

[4] L. Blank, H. Garcke, C. Hecht and C. Rupprecht, Sharp interface limit for a phase field model in structural optimization. SIAM J. Control Optim. 54 (2016) 1558–1584. | MR | Zbl | DOI

[5] L. Blank, H. Garcke, M. H. Farshbaf-Shaker and V. Styles, Relating phase field and sharp interface approaches to structural topology optimization. ESAIM: COCV 20 (2014) 1025–1058. | MR | Zbl | Numdam

[6] M. Boissier, J. Deaton, P. Beran and N. Vermaak, Elastoplastic topology optimization and cyclically loaded structures via direct methods for shakedown. Struct. Multidisc. Optim. 64 (2021) 189–217. | MR | DOI

[7] B. Bourdin and A. Chambolle, Design-dependent loads in topology optimization. ESAIM: COCV 9 (2003) 19–48. | MR | Zbl | Numdam

[8] M. Burger and R. Stainko, Phase-field relaxation of topology optimization with local stress constraints. SIAM J. Control Optim. 45 (2006) 1447–1466. | MR | Zbl | DOI

[9] M. Carraturo, E. Rocca, E. Bonetti, D. Hömberg, A. Reali and F. Auricchio, Graded-material design based on phase-field and topology optimization. Comput. Mech. 64 (2019) 1589–1600. | MR | Zbl | DOI

[10] J. C. De Los Reyes, R. Herzog and C. Meyer, Optimal control of static elastoplasticity in primal formulation. SIAM J. Control Optim. 54 (2016) 3016–3039. | MR | Zbl | DOI

[11] K. Gröger, A W 1 , p -estimate for solutions to mixed boundary value problems for second order elliptic differential equations. Math. Ann. 283 (1989) 679–687. | MR | Zbl | DOI

[12] W. Han and B. D. Reddy, Plasticity, Interdisciplinary Applied Mathematics. Springer, New York (2013). | MR | Zbl | DOI

[13] J. Haslinger and P. Neittaanmäki, On the existence of optimal shapes in contact problems-perfectly plastic bodies. Comput. Mech. 1 (1986) 293–299. | Zbl | DOI

[14] J. Haslinger, P. Neittaanmäki and T. Tiihonen, Shape optimization in contact problems. 1. Design of an elastic body. 2. Design of an elastic perfectly plastic body. Analysis and Optimization of Systems, Springer (1986) 29–39. | Zbl | DOI

[15] R. Herzog, C. Meyer and G. Wachsmuth, Integrability of displacement and stresses in linear and nonlinear elasticity with mixed boundary conditions. J. Math. Anal. Appl. 382 (2011) 802–813. | MR | Zbl | DOI

[16] R. Herzog, C. Meyer and G. Wachsmuth, C-stationarity for optimal control of static plasticity with linear kinematic hardening. SIAM J. Control Optim. 50 (2012) 3052–3082. | MR | Zbl | DOI

[17] I. Hlaváček, Shape optimization of elastoplastic bodies obeying Hencky's law. Appl. Mater. 31 (1986) 486–499. | MR | Zbl

[18] I. Hlaváček, Shape optimization of an elastic-perfectly plastic body. Appl. Mater. 32 (1987) 381–400. | MR | Zbl

[19] I. Hlaváček, Shape optimization of elastoplastic axisymmetric bodies. Appl. Math. 36 (1991) 469–491. | MR | Zbl | DOI

[20] R. Karkauskas, Optimization of elastic-plastic geometrically non-linear lightweight structures under stiffness and stability constraints. J. Civil Eng. Manag. 10 (2004) 97–106.

[21] M. Khanzadi and M. Tavakkoli, Optimal plastic design of frames using evolutionary structural optimization. Int. J. Civil Eng. 9 (2011) 175–170.

[22] P. Krejčí, Evolution variational inequalities and multidimensional hysteresis operators. Technical Report 432, Weierstrass Institute for Applied Analysis and Stochastics (WIAS) (1998). | MR | Zbl

[23] A. Maury, G. Allaire and F. Jouve, Elasto-plastic shape optimization using the level set method. SIAM J. Control Optim. 56 (2018) 556–581. | MR | Zbl | DOI

[24] A. Mielke, Evolution in rate-independent systems. In Vol. 2 of Handbook of Differential Equations, Evolutionary Equations. Edited by C. Dafermos and E. Feireisl. Elsevier (2005) 461–559. | MR | Zbl | DOI

[25] A. Mielke and T. Roubíček, Rate-independent systems. Vol. 193 of Applied Mathematical Sciences. Springer, New York (2015). Theory and application. | MR | Zbl

[26] A. Mielke, T. Roubíček and U. Stefanelli, Γ -limits and relaxations for rate-independent evolutionary problems. Calc. Var. Partial Differ. Equ. 31 (2008) 387–416. | MR | Zbl | DOI

[27] L. Modica and S. Mortola, Un esempio di Γ - -convergenza. Boll. Un. Mat. Ital. B 14 (1977) 285–299. | MR | Zbl

[28] C. B. W. Pedersen, Topology optimization of 2D-frame structures with path-dependent response. Internat. J. Numer. Methods Eng. 57 (2003) 1471–1501. | Zbl | DOI

[29] P. Penzler, M. Rumpf and B. Wirth, A phase-field model for compliance shape optimization in nonlinear elasticity. ESAIM: COCV 18 (2012) 229–258. | MR | Zbl | Numdam

[30] F. Rindler, Optimal control for nonconvex rate-independent evolution processes. SIAM J. Control Optim. 47 (2008) 2773–2794. | MR | Zbl | DOI

[31] F. Rindler, Approximation of rate-independent optimal control problems. SIAM J. Numer. Anal. 47 (2009) 3884–3909. | MR | Zbl | DOI

[32] J. Sokolowski and J.-P. Zolesio, Introduction to Shape Optimization. Shape Sensitivity Analysis. Springer Ser. Comput. Math. 16. Springer-Verlag, Berlin (1992). | MR | Zbl

[33] G. Wachsmuth, Optimal control of quasi-static plasticity with linear kinematic hardening, Part I: Existence and discretization in time. SIAM J. Control Optim. 50 (2012) 2836–2861 + loose erratum. | MR | Zbl | DOI

[34] G. Wachsmuth, Optimal control of quasistatic plasticity with linear kinematic hardening II: regularization and differentiability. Z. Anal. Anwend. 34 (2015) 391–418. | MR | Zbl | DOI

[35] G. Wachsmuth, Optimal control of quasistatic plasticity with linear kinematic hardening III: optimality conditions. Z. Anal. Anwend. 35 (2016) 81–118. | MR | Zbl | DOI

Cité par Sources :