Long time dynamics and upper semi-continuity of attractors for piezoelectric beams with nonlinear boundary feedback
ESAIM: Control, Optimisation and Calculus of Variations, Tome 28 (2022), article no. 39

A system of boundary-controlled piezoelectric beam equations, accounting for the interactions between mechanical vibrations and the fully-dynamic electromagnetic fields, is considered. Even though electrostatic and quasi-static electromagnetic field approximations of Maxwell’s equations are sufficient for most models of piezoelectric systems, where the magnetic permeability is completely discarded, the PDE model considered here retains the pronounced wave behavior of electromagnetic fields to accurately describe the dynamics for the most piezoelectric acoustic devices. It is also crucial to investigate whether the closed-loop dynamics of the fully-dynamic piezoelectric beam equations, with nonlinear state feedback and nonlinear external sources, is close to the one described by the electrostatic/quasi-static equations, when the magnetic permeability μ is small. Therefore, the asymptotic behavior is analyzed for the fully-dynamic model at first. The existence of global attractors with finite fractal dimension and the existence of exponential attractors are proved. Finally, the upper-semicontinuity of attractors with respect to magnetic permeability to the ones of the electrostatic/quasi-static beam equations is shown.

DOI : 10.1051/cocv/2022036
Classification : 93D20, 35Q74, 74K10, 37L30, 47H20, 35L70
Keywords: Global attractors, nonlinear boundary dissipation, exponential attractors, attractor upper-semicontinuity, piezoelectric beam, electrostatic, Maxwell’s equations
@article{COCV_2022__28_1_A39_0,
     author = {Freitas, M. M. and \"Ozer, A. \"O. and Ramos, A. J. A.},
     title = {Long time dynamics and upper semi-continuity of attractors for piezoelectric beams with nonlinear boundary feedback  },
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {28},
     doi = {10.1051/cocv/2022036},
     mrnumber = {4445584},
     zbl = {1501.74032},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/cocv/2022036/}
}
TY  - JOUR
AU  - Freitas, M. M.
AU  - Özer, A. Ö.
AU  - Ramos, A. J. A.
TI  - Long time dynamics and upper semi-continuity of attractors for piezoelectric beams with nonlinear boundary feedback  
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2022
VL  - 28
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/cocv/2022036/
DO  - 10.1051/cocv/2022036
LA  - en
ID  - COCV_2022__28_1_A39_0
ER  - 
%0 Journal Article
%A Freitas, M. M.
%A Özer, A. Ö.
%A Ramos, A. J. A.
%T Long time dynamics and upper semi-continuity of attractors for piezoelectric beams with nonlinear boundary feedback  
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2022
%V 28
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2022036/
%R 10.1051/cocv/2022036
%G en
%F COCV_2022__28_1_A39_0
Freitas, M. M.; Özer, A. Ö.; Ramos, A. J. A. Long time dynamics and upper semi-continuity of attractors for piezoelectric beams with nonlinear boundary feedback. ESAIM: Control, Optimisation and Calculus of Variations, Tome 28 (2022), article no. 39. doi: 10.1051/cocv/2022036

[1] V. Barbu, Nonlinear Differential Equations of Monotone Types in Banach Spaces. Springer Monographs in Mathematics. Springer, New York (2010). | MR | Zbl | DOI

[2] C. Baur, D. J. Apo, D. Maurya, S. Priya and M. Voit, Piezoelectric polymer composites for vibrational energy harvesting. Am. Chem. Soc. (2014), Chapter 1, pp. 1–27.

[3] I. Chueshov, M. Eller and I. Lasiecka, On the attractor for a semilinear wave equation with critical exponent and nonlinear boundary dissipation. Commun. Partial Differ. Equ. 27 (2002) 1901–1951. | MR | Zbl | DOI

[4] I. Chueshov, M. Eller and I. Lasiecka, Finite dimensionality of the attractor for a semilinear wave equation with nonlinear boundary dissipation. Commun. Partial Differ. Equ. 29 (2004) 1847–1876. | MR | Zbl | DOI

[5] I. Chueshov and I. Lasiecka, Global attractors for von Kármán evolutions with a nonlinear boundary dissipation. J. Differ. Equ. 198 (2004) 196–231. | MR | Zbl | DOI

[6] I. Chueshov and I. Lasiecka, Long-time dynamics of von Kármán semi-flows with non-linear boundary/interior damping. J. Diff. Equ. 233 (2007) 42–86. | MR | Zbl | DOI

[7] I. Chueshov and I. Lasiecka, Long-time behavior of second order evolution equations with nonlinear damping. Vol. 195 of Mem. Amer. Math. Soc. Providence (2008). | MR | Zbl

[8] I. Chueshov and I. Lasiecka, Von Kármán Evolution Equations. Well-posedness and Long Time Dynamics. Springer Monographs in Mathematics. Springer, New York (2010). | MR | Zbl | DOI

[9] A. N. Darinskii, E. Le Clezio and G. Feuillard, The role of electromagnetic waves in the reflection of acoustic waves in piezoelectric crystals. Wave Motion. 45 (2008) 428–444. | MR | Zbl | DOI

[10] S. Devasia, V. Eleftheriou and S. O. Reza Moheimani, A survey of control issues in nanopositioning. IEEE Trans. Control Syst. Technol. 15 (2007) 802–823. | DOI

[11] W. Dong, L. Xiao, W. Hu, C. Zhu, Y. Huang and Z. Yin, Wearable human—machine interface based on PVDF piezoelectric sensor. Trans. Inst. Measur. Control. 39 (2017) 398–403. | DOI

[12] F. Ebrahimi and M. R. Barati, Vibration analysis of smart piezoelectrically actuated nano-beams subjected to magnetoelectrical field in thermal environment. J. Vibr. Control. 24 (2016) 549–564. | MR | DOI

[13] A. Erturk, Assumed-modes modeling of piezoelectric energy harvesters: Euler-Bernoulli, Rayleigh, and Timoshenko models with axial deformations. Comput. Struct. 106/107 (2012) 214–227. | DOI

[14] G. Y. Gu et al., Modeling and control of piezo-actuated nanopositioning stages: a survey. IEEE Trans. Autom. Sci. Eng. 13 (2016) 313–332. | DOI

[15] P. G. Geredeli and I. Lasiecka, Asymptotic analysis and upper semicontinuity with respect to rotational inertia of attractors to von Kármán plates with geometrically localized dissipation and critical nonlinearity. Nonlinear Anal. 91 (2013) 72–92. | MR | Zbl | DOI

[16] B. Feng and A. O. Özer, Long-time behavior of a nonlinearly-damped three-layer Rao-Nakra sandwich beam (2022). | MR | Zbl

[17] J. K. Hale and G. Raugel, Upper semicontinuity of the attractor for a singulary perturbed hyperbolic equation. J. Differ. Equ. 73 (1988) 197–214. | MR | Zbl | DOI

[18] M. A. Horn and I. Lasiecka, Asymptotic behavior with respect to thickness of boundary stabilizing feedback for the Kirchhoff plate. J. Differ. Equ. 114 (1994) 396–433. | MR | Zbl | DOI

[19] M. A. Jorge Silva and V. Narciso, Attractors and their properties for a class of nonlocal extensible beams. Discrete Contin. Dyn. Syst. 35 (2015) 985–1008. | MR | Zbl | DOI

[20] D. H. Kim et al., Microengineered platforms for cell mechanobiology. Annu. Rev. Biomed. Eng. 11 (2009) 203–233. | DOI

[21] J. E. Lagnese and G. Leugering, Uniform stabilization of a nonlinear beam by nonlinear boundary feedback. J. Differ. Equ. 91 (1991) 355–388. | MR | Zbl | DOI

[22] I. Lasiecka, Finite-dimensionality of attractors associated with von Kármán plate equations and boundary damping. J. Diff. Equ. 117 (1995) 357–389. | MR | Zbl | DOI

[23] I. Lasiecka, Local and global compact attractors arising in nonlinear elasticity: the case of noncompact nonlinearity and nonlinear dissipation. J. Math. Anal. Appl. 196 (1995) 332–360. | MR | Zbl | DOI

[24] I. Lasiecka and D. Tataru, Uniform boundary stabilization of semilinear wave equations with nonlinear boundary damping. Differ. Integr. Equ. 6 (1993) 507–533. | MR | Zbl

[25] T. F. Ma and R. N. Monteiro, Singular limit and long-time dynamics of Bresse systems. SIAM J. Math. Anal. 4 (2017) 2468–2495. | MR | Zbl

[26] G. P. Menzala and E. Zuazua, Timoshenko’s beam equation as limit of a nonlinear onedimensional Von Kármán system. SIAM J. Math. Anal. 130A (2000) 855–875. | MR | Zbl

[27] K. A. Morris and A. Ö. Özer, Strong stabilization of piezoelectric beams with magnetic effects. In: The Proceedings of 52nd IEEE Conference on Decision & Control (2013) 3014–3019. | DOI

[28] K. A. Morris and A. Ö. Özer, Modeling and stabilizability of voltage-actuated piezoelectric beams with magnetic effects. SIAM J. Control Optim. 52 (2014) 2371–2398. | MR | Zbl | DOI

[29] A. Ö. Özer and A. K. Aydin, Uniform observability of filtered approximations for a three-layer Mead-Marcus beam equation. Preprint.

[30] A. Ö. Özer and W. Horner, Uniform boundary observability of Finite Difference approximations of non-compactly-coupled piezoelectric beam equations. Appl. Anal. 101 (2021) 1571–1592. | MR | Zbl | DOI

[31] A. Ö. Özer, Further stabilization and exact observability results for voltage-actuated piezoelectric beams with magnetic effects. Math. Control Signals Syst. 27 (2015) 219–244. | MR | Zbl | DOI

[32] A. Ö. Özer, Dynamic and electrostatic modeling for a piezoelectric smart composite and related stabilization results. Evol. Equ. Control Theory 7 (2018) 639–868. | MR | Zbl | DOI

[33] A. J. A. Ramos, C. S. L. Gonçalves and S. S. Corrêa Neto, Exponential stability and numerical treatment for piezoelectric beams with magnetic effect. Modélisation Mathématique et Analyse Numérique. 52 (2018) 255–274. | MR | Zbl | Numdam

[34] A. Ö. Özer, Stabilization results for well-posed potential formulations of a current-controlled piezoelectric beam and their approximations. Appl. Math. Optim. (2020) 1–38. | MR | Zbl

[35] A. J. A. Ramos, M. M. Freitas, D. S. Almeidajr., S. S. Jesus and T. R. S. Moura, Equivalence between exponential stabilization and boundary observability for piezoelectric beams with magnetic effect. Z. Angew. Math. Phys. 70 (2019) 60. | MR | Zbl | DOI

[36] A. Ruiz, Unique continuation for weak solutions of the wave equation plus a potential. J. Math. Pures Appl. 71 (1992) 455–467. | MR | Zbl

[37] J. Simon, Compact sets in the space L p ( 0 , T ; B ) . Annali di Matematica Pura ed Applicata. 146 (1987) 65–96. | MR | Zbl | DOI

[38] R. C. Smith, Smart Material Systems. Society for Industrial and Applied Mathematics, Philladelphia, PA (2005). | MR | Zbl

[39] D. Tallarico, N. Movchan, A. Movchan and M. Camposaragna, Propagation and filtering of elastic and electromagnetic waves in piezoelectric composite structures. Math. Meth. Appl. Sci. 40 (2017) 3202–3220. | MR | Zbl | DOI

[40] D. Tataru, Uniform decay rates and attractors for evolution PDE’s with boundary dissipation. J. Diff. Equ. 121 (2005) 1–27. | MR | Zbl | DOI

[41] J. Yang, Fully-dynamic theory, in Special Topics in the Theory of Piezoelectricity, edited by J. Yang. Springer, New-York (2009). | Zbl | DOI

Cité par Sources :

M. M. Freitas thanks the CNPq for financial support through the Grant No. 313081/2021-2.

A.Ö. Özer gratefully acknowledges the financial support of the National Science Foundation under Cooperative Agreement No. 1849213.

A. J. A. Ramos thanks the CNPq for financial support through Grant No. 310729/2019-0.