Regularity properties of the Schrödinger cost
ESAIM: Control, Optimisation and Calculus of Variations, Tome 28 (2022), article no. 48

The Schrödinger problem is an entropy minimisation problem on the space of probability measures. Its optimal value is a cost between two probability measures. In this article we investigate some regularity properties of this cost: continuity with respect to the marginals and time derivative of the cost along probability measures valued curves.

DOI : 10.1051/cocv/2022033
Classification : 35K05
Keywords: Schrödinger problem, Otto calculus, Entropy, Benamou-Brenier-Schrödinger formula
@article{COCV_2022__28_1_A48_0,
     author = {Clerc, Gauthier},
     title = {Regularity properties of the {Schr\"odinger} cost},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {28},
     doi = {10.1051/cocv/2022033},
     mrnumber = {4448806},
     zbl = {1498.49083},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/cocv/2022033/}
}
TY  - JOUR
AU  - Clerc, Gauthier
TI  - Regularity properties of the Schrödinger cost
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2022
VL  - 28
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/cocv/2022033/
DO  - 10.1051/cocv/2022033
LA  - en
ID  - COCV_2022__28_1_A48_0
ER  - 
%0 Journal Article
%A Clerc, Gauthier
%T Regularity properties of the Schrödinger cost
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2022
%V 28
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2022033/
%R 10.1051/cocv/2022033
%G en
%F COCV_2022__28_1_A48_0
Clerc, Gauthier. Regularity properties of the Schrödinger cost. ESAIM: Control, Optimisation and Calculus of Variations, Tome 28 (2022), article no. 48. doi: 10.1051/cocv/2022033

[1] L. Ambrosio, N. Gigli and G. Savaré, Gradient flows in metric spaces and in the space of probability measures. 2nd ed., 2nd edn. Birkhauser, Basel (2008). | MR

[2] J. Backhoff-Veraguas and P. Gudmund, Stability of martingale optimal transport and weak optimal transport. Preprint (2019). | arXiv

[3] D. Bakry and M. Emery, Diffusions hypercontractives., Semin. de probabilités XIX, Univ. Strasbourg 1983/84, Proc., Lect. Notes Math. 1123 (1985) 177–206. | MR | Zbl | Numdam | DOI

[4] D. Bakry, I. Gentil and M. Ledoux, Analysis and geometry of Markov diffusion operators. Springer, Cham (2014). | MR | Zbl

[5] J.-D. Benamou and Y. Brenier, A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem. Numer. Math. 84 (2000) 375–393. | MR | Zbl | DOI

[6] Y. Chen, T. T. Georgiou and M. Pavon, On the relation between optimal transport and Schrödinger bridges: a stochastic control viewpoint. J. Optim. Theory Appl. 169 (2016) 671–691. Probab. Theory Relat. Fields 174 (2019) 1-47. | MR | Zbl | DOI

[7] G. Clerc, G. Conforti and I. Gentil, Long-time behaviour of entropic interpolations (2020).

[8] G. Clerc, G. Conforti and I. Gentil, On the variational interpretation of local logarithmic Sobolev inequalities (2020), working paper or preprint. | MR | Numdam

[9] G. Conforti, A second order equation for Schrödinger bridges with applications to the hot gas experiment and entropic transportation cost.

[10] H. Follmer, Random fields and diffusion processes., Calcul des probabilités, Éc. d’Été, Saint-Flour. 1985-87, Lect. Notes Math. 1362 (1988) 101–203. | MR | Zbl

[11] I. Gentil, C. Léonard and L. Ripani, About the analogy between optimal transport and minimal entropy. Ann. Fac. Sci. Toulouse Math. 26 (2017) 569–601. | MR | Zbl | Numdam | DOI

[12] I. Gentil, C. Léonard and L. Ripani, Dynamical aspects of the generalized Schrödinger problem via Otto calculus - a heuristic point of view. Rev. Mat. Iberoam. 36 (2020) 1071–1112. | MR | Zbl | DOI

[13] I. Gentil, C. Léonard, L. Ripani and L. Tamanini, An entropic interpolation proof of the HWI inequality. Stochastic Process. Appl. 130 (2020) 907–923. | MR | Zbl | DOI

[14] P. Ghosal, M. Nutz and E. Bernton, Stability of Entropic Optimal Transport and Schrödinger Bridges. Preprint (2021). | arXiv | MR

[15] N. Gigli, Second order analysis on ( P 2 ( M ) , W 2 ) . Mem. Am. Math. Soc. 1018 (2012) 154. | MR | Zbl

[16] N. Gigli and L. Tamanini, Benamou-Brenier and Kantorovich duality formulas for the entropic cost on RCD*(K,N) spaces. Probab. Theory Relat. Fields 176 (2020) 1–34. | MR | Zbl | DOI

[17] A. Grigor’Yan, Heat kernel and analysis on manifolds, AMS/IP Studies in Advanced Mathematics, vol. 47, American Mathematical Society, Providence, RI; International Press, Boston, MA (2009). | MR | Zbl

[18] C. Léonard, A survey of the Schrödinger problem and some of its connections with optimal transport. Discrete Contin. Dyn. Syst. 34 (2014) 1533–1574. | MR | Zbl | DOI

[19] T. Mikami, Monge’s problem with a quadratic cost by the zero-noise limit of h -path processes. Probab. Theory Relat. Fields 129 (2004) 245–260. | MR | Zbl | DOI

[20] F. Otto, The geometry of dissipative evolution equations: The porous medium equation. Commun. Partial Differ. Equ. 26 (2001) 101–174. | MR | Zbl | DOI

[21] G. Peyré and M. Cuturi, Computational optimal transport. Found. Trends Mach. Learn. 11 (2019) 355–607. | DOI

[22] E. Schrödinger, Über die Umkehrung der Naturgesetze. Sitzungsberichte Preuss. Akad. Wiss. Berlin. Phys. Math. 144 (1931) 144–153. | Zbl

[23] E. Schrödinger, Sur la theorie relativiste de l’electron et l’interprétation de la mecanique quantique. Ann. Inst. H. Poincare 2 (1932) 269–310. | MR | JFM | Numdam

[24] L. Tamanini, Analysis and geometry of RCD spaces via the Schrödinger problem,. Ph.D. thesis (2017).

[25] C. Villani, Optimal transport. Old and new. Springer, Berlin (2009). | MR | Zbl

Cité par Sources :