The Schrödinger problem is an entropy minimisation problem on the space of probability measures. Its optimal value is a cost between two probability measures. In this article we investigate some regularity properties of this cost: continuity with respect to the marginals and time derivative of the cost along probability measures valued curves.
Keywords: Schrödinger problem, Otto calculus, Entropy, Benamou-Brenier-Schrödinger formula
@article{COCV_2022__28_1_A48_0,
author = {Clerc, Gauthier},
title = {Regularity properties of the {Schr\"odinger} cost},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
year = {2022},
publisher = {EDP-Sciences},
volume = {28},
doi = {10.1051/cocv/2022033},
mrnumber = {4448806},
zbl = {1498.49083},
language = {en},
url = {https://www.numdam.org/articles/10.1051/cocv/2022033/}
}
TY - JOUR AU - Clerc, Gauthier TI - Regularity properties of the Schrödinger cost JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2022 VL - 28 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/cocv/2022033/ DO - 10.1051/cocv/2022033 LA - en ID - COCV_2022__28_1_A48_0 ER -
Clerc, Gauthier. Regularity properties of the Schrödinger cost. ESAIM: Control, Optimisation and Calculus of Variations, Tome 28 (2022), article no. 48. doi: 10.1051/cocv/2022033
[1] , and , Gradient flows in metric spaces and in the space of probability measures. 2nd ed., 2nd edn. Birkhauser, Basel (2008). | MR
[2] and , Stability of martingale optimal transport and weak optimal transport. Preprint (2019). | arXiv
[3] and , Diffusions hypercontractives., Semin. de probabilités XIX, Univ. Strasbourg 1983/84, Proc., Lect. Notes Math. 1123 (1985) 177–206. | MR | Zbl | Numdam | DOI
[4] , and , Analysis and geometry of Markov diffusion operators. Springer, Cham (2014). | MR | Zbl
[5] and , A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem. Numer. Math. 84 (2000) 375–393. | MR | Zbl | DOI
[6] , and , On the relation between optimal transport and Schrödinger bridges: a stochastic control viewpoint. J. Optim. Theory Appl. 169 (2016) 671–691. Probab. Theory Relat. Fields 174 (2019) 1-47. | MR | Zbl | DOI
[7] , and , Long-time behaviour of entropic interpolations (2020).
[8] , and , On the variational interpretation of local logarithmic Sobolev inequalities (2020), working paper or preprint. | MR | Numdam
[9] , A second order equation for Schrödinger bridges with applications to the hot gas experiment and entropic transportation cost.
[10] , Random fields and diffusion processes., Calcul des probabilités, Éc. d’Été, Saint-Flour. 1985-87, Lect. Notes Math. 1362 (1988) 101–203. | MR | Zbl
[11] , and , About the analogy between optimal transport and minimal entropy. Ann. Fac. Sci. Toulouse Math. 26 (2017) 569–601. | MR | Zbl | Numdam | DOI
[12] , and , Dynamical aspects of the generalized Schrödinger problem via Otto calculus - a heuristic point of view. Rev. Mat. Iberoam. 36 (2020) 1071–1112. | MR | Zbl | DOI
[13] , , and , An entropic interpolation proof of the HWI inequality. Stochastic Process. Appl. 130 (2020) 907–923. | MR | Zbl | DOI
[14] , and , Stability of Entropic Optimal Transport and Schrödinger Bridges. Preprint (2021). | arXiv | MR
[15] , Second order analysis on . Mem. Am. Math. Soc. 1018 (2012) 154. | MR | Zbl
[16] and , Benamou-Brenier and Kantorovich duality formulas for the entropic cost on RCD*(K,N) spaces. Probab. Theory Relat. Fields 176 (2020) 1–34. | MR | Zbl | DOI
[17] , Heat kernel and analysis on manifolds, AMS/IP Studies in Advanced Mathematics, vol. 47, American Mathematical Society, Providence, RI; International Press, Boston, MA (2009). | MR | Zbl
[18] , A survey of the Schrödinger problem and some of its connections with optimal transport. Discrete Contin. Dyn. Syst. 34 (2014) 1533–1574. | MR | Zbl | DOI
[19] , Monge’s problem with a quadratic cost by the zero-noise limit of -path processes. Probab. Theory Relat. Fields 129 (2004) 245–260. | MR | Zbl | DOI
[20] , The geometry of dissipative evolution equations: The porous medium equation. Commun. Partial Differ. Equ. 26 (2001) 101–174. | MR | Zbl | DOI
[21] and , Computational optimal transport. Found. Trends Mach. Learn. 11 (2019) 355–607. | DOI
[22] , Über die Umkehrung der Naturgesetze. Sitzungsberichte Preuss. Akad. Wiss. Berlin. Phys. Math. 144 (1931) 144–153. | Zbl
[23] , Sur la theorie relativiste de l’electron et l’interprétation de la mecanique quantique. Ann. Inst. H. Poincare 2 (1932) 269–310. | MR | JFM | Numdam
[24] , Analysis and geometry of RCD spaces via the Schrödinger problem,. Ph.D. thesis (2017).
[25] , Optimal transport. Old and new. Springer, Berlin (2009). | MR | Zbl
Cité par Sources :





