Gamma-convergence results for nematic elastomer bilayers: relaxation and actuation
ESAIM: Control, Optimisation and Calculus of Variations, Tome 28 (2022), article no. 36

We compute effective energies of thin bilayer structures composed of soft nematic elastic liquid crystals in various geometrical regimes and functional configurations. Our focus is on elastic foundations composed of an isotropic layer attached to a nematic substrate where order-strain interaction results in complex opto-mechanical instabilities activated via coupling through the common interface. Allowing out-of-plane displacements, we compute Gamma-limits for vanishing thickness which exhibit spontaneous stress relaxation and shape-morphing behaviour. This extends the plane strain modelling of Cesana and Leon Baldelli [Math. Models Methods Appl. Sci. (2018) 2863-2904], and shows the asymptotic emergence of fully coupled active macroscopic nematic foundations. Subsequently, we focus on actuation and compute asymptotic configurations of an active plate on nematic foundation interacting with an applied electric field. From the analytical standpoint, the presence of an electric field and its associated electrostatic work turns the total energy non-convex and non-coercive. We show that equilibrium solutions are min-max points of the system, that min-maximising sequences pass to the limit and, that the limit system can exert mechanical work under applied electric fields.

DOI : 10.1051/cocv/2022029
Classification : 82D30, 74Q05, 49J45, 35A15
Keywords: Liquid crystals, nematic elastomers, linearized elasticity, bi-layers, Gamma-convergence
@article{COCV_2022__28_1_A36_0,
     author = {Cesana, Pierluigi and Baldelli, Andr\'es A. Le\'on},
     title = {Gamma-convergence results for nematic elastomer bilayers: relaxation and actuation},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {28},
     doi = {10.1051/cocv/2022029},
     mrnumber = {4438712},
     zbl = {1491.82021},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/cocv/2022029/}
}
TY  - JOUR
AU  - Cesana, Pierluigi
AU  - Baldelli, Andrés A. León
TI  - Gamma-convergence results for nematic elastomer bilayers: relaxation and actuation
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2022
VL  - 28
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/cocv/2022029/
DO  - 10.1051/cocv/2022029
LA  - en
ID  - COCV_2022__28_1_A36_0
ER  - 
%0 Journal Article
%A Cesana, Pierluigi
%A Baldelli, Andrés A. León
%T Gamma-convergence results for nematic elastomer bilayers: relaxation and actuation
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2022
%V 28
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2022029/
%R 10.1051/cocv/2022029
%G en
%F COCV_2022__28_1_A36_0
Cesana, Pierluigi; Baldelli, Andrés A. León. Gamma-convergence results for nematic elastomer bilayers: relaxation and actuation. ESAIM: Control, Optimisation and Calculus of Variations, Tome 28 (2022), article no. 36. doi: 10.1051/cocv/2022029

[1] V. Agostiniani, G. Dal Maso and A. Desimone, Attainment results for nematic elastomers. Proc. Roy. Soc. Edinburgh A 145 (2015) 669–701. | MR | Zbl | DOI

[2] V. Agostiniani and A. Desimone, Gamma-convergence of energies for nematic elastomers in the small strain limit. Continu. Mech. Thermodyn. 23 (2011) 257–274. | MR | Zbl | DOI

[3] V. Agostiniani and A. De Simone, Dimension reduction for soft active materials via Gamma-convergence. Meccanica 52 (2017) 3457–3470. | MR | Zbl | DOI

[4] V. Agostiniani and A. Desimone, Rigorous derivation of active plate models for thin sheets of nematic elastomers. Math. Mech. Solids 25 (2020) 1804–1830. | MR | Zbl | DOI

[5] V. Agostiniani, A. Desimone and K. Koumatos, Shape programming for narrow ribbons of nematic elastomers. J. Elasticity 127 (2017) 1–24. | MR | Zbl | DOI

[6] R. Bai and K. Bhattacharya, Photomechanical coupling in photoactive nematic elastomers. J. Mech. Phys. Solids 144 (2020) 104115. | MR | DOI

[7] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, V. Eijkhout, D. Kaushik, M. G. Knepley, D. A. May, L. C. Mcinnes, W. D. Gropp, K. Rupp, P. Sanan, B. F. Smith, S. Zampini, H. Zhang and H. Zhang, PETSc Users Manual. Tech. Rep. ANL-95/11 - Revision 3.8, Argonne National Laboratory (2017).

[8] S. Balay, W. D. Gropp, L. C. Mcinnes and B. F. Smith, Efficient management of parallelism in object oriented numerical software libraries, in E. Arge, A. M. Bruaset and H. P. Langtangen (editors), Modern Software Tools in Scientific Computing. Birkhäuser Press (1997) 163–202. | Zbl | DOI

[9] J. M. Ball and R. D. James, Fine phase mixtures as minimizers of energy, in Analysis and Continuum Mechanics. Springer (1989), pp. 647–686.

[10] M. Barchiesi and A. De Simone, Frank energy for nematic elastomers: a nonlinear model. ESAIM: COCV 21 (2015) 372–377. | MR | Zbl | Numdam

[11] P. Bella and R. V. Kohn, Wrinkles as the result of compressive stresses in an annular thin film. Commun. Pure Appl. Math. 67 (2014) 693–747. | MR | Zbl | DOI

[12] K. Bhattacharya, Microstructure of martensite: why it forms and how it gives rise to the shape-memory effect. Oxford University Press (2003). | MR | Zbl | DOI

[13] P. Bladon, E. M. Terentjev and M. Warner, Transitions and instabilities in liquid crystal elastomers. Phys. Rev. E 47 (1993) R3838. | DOI

[14] P. Cesana, PhD Thesis (2009).

[15] P. Cesana, Relaxation of multiwell energies in linearized elasticity and applications to nematic elastomers. Arch. Ratl. Mech. Anal. 197 (2010) 903–923. | MR | Zbl | DOI

[16] P. Cesana, Nematic elastomers: Gamma-limits for large bodies and small particles. SIAM J. Math. Anal. 43 (2011) 2354–2383. | MR | Zbl | DOI

[17] P. Cesana, F. Della Porta, A. Rueland, C. Zillinger and B. Zwicknagl, Exact constructions in the (non-linear) planar theory of elasticity: from elastic crystals to nematic elastomers. Arch. Ratl. Mech. Anal. 237 (2020) 383–445. | MR | Zbl | DOI

[18] P. Cesana and A. Desimone, Strain-order coupling in nematic elastomers: equilibrium configurations. Math. Models Methods Appl. Sci. 19 (2009) 601–630. | MR | Zbl | DOI

[19] P. Cesana and A. Desimone, Quasiconvex envelopes of energies for nematic elastomers in the small strain regime and applications. J. Mech. Phys. Solids 59 (2011) 787–803. | MR | Zbl | DOI

[20] P. Cesana and A. A. Leon Baldelli, Variational modelling of nematic elastomer foundations. Math. Models Methods Appl. Sci. 28 (2018) 2863–2904. | MR | Zbl | DOI

[21] P. Cesana, P. Plucinsky and K. Bhattacharya, Effective behavior of nematic elastomer membranes. Arch. Ratl. Mech. Anal. 218 (2015) 1–43. | MR | Zbl | DOI

[22] P. G. Ciarlet, vol. 1 of Three-dimensional elasticity. Elsevier (1988). | Zbl

[23] S. Conti, A. Desimone and G. Dolzmann, Semi-soft elasticity and director reorientation in stretched sheets of nematic elastomers. Phys. Rev. E 60 (2002) 61710-1-8.

[24] S. Conti, A. Desimone and G. Dolzmann, Soft elastic response of stretched sheets of nematic elastomers: a numerical study. J. Mech. Phys. Solids 50 (2002) 1431–1451. | MR | Zbl | DOI

[25] G. Dal Maso, An introduction to Γ -convergence, volume 8 of Progress in Nonlinear Differential Equations and their Applications. Springer Science+Business Media, LLC (1993). | MR | Zbl

[26] P.-G. De Gennes and J. Prost, vol. 23 of The physics of liquid crystals, Clarendon Press, Oxford (1993). | DOI

[27] A. De Simone, Energy minimizers for large ferromagnetic bodies. Arch. Ratl. Mech. Anal. 125 (1993) 99–143. | MR | Zbl | DOI

[28] A. De Simone, Hysteresis and imperfection sensitivity in small ferromagnetic particles. Meccanica 30 (1995) 591–603. | MR | Zbl | DOI

[29] A. De Simone, Energetics of fine domain structures. Ferroelectrics 222 (1999) 275–284. | DOI

[30] A. De Simone and G. Dolzmann, Macroscopic response of nematic elastomers via relaxation of a class of SO ( 3 ) -invariant energies. Arch. Ratl. Mech. Anal. 161 (2002) 181–204. | MR | Zbl | DOI

[31] A. De Simone, P. Gidoni and G. Noselli, Liquid crystal elastomer strips as soft crawlers. J. Mech. Phy. Solids 84 (2015) 254–272. | MR | Zbl | DOI

[32] A. De Simone and L. Teresi, Elastic energies for nematic elastomers. Eur. Phys. J. E 29 (2009) 191–204. | DOI

[33] J. Ericksen, Liquid crystals with variable degree of orientation. Arch. Ratl. Mech. Anal. 113 (1991) 97–120. | MR | Zbl | DOI

[34] F. Frank, P. Wojtowicz and P. Sheng, On the theory of liquid crystals. Discuss. Faraday Soc. 25 (1958) 19–28. | DOI

[35] F. Greco, V. Domenici, S. Romiti, T. Assaf, B. Zupančič, J. Milavec, B. Zalar, B. Mazzolai and V. Mattoli, Reversible heat-induced microwrinkling of PEDOT: PSS nanofilm surface over a monodomain liquid crystal elastomer. Mol. Cryst. Liquid Crys. 572 (2013) 40–49. | DOI

[36] K. Korner, A. S. Kuenstler, R. C. Hayward, B. Audoly and K. Bhattacharya, A nonlinear beam model of photomotile structures. Proc. Natl. Acad. Sci. 117 (2020) 9762. | MR | DOI

[37] A. Kuenstler, Y. Chen, P. Bui, H. Kim, A. Desimone, L. Jin and R. Hayward, Blueprinting photothermal shape-morphing of liquid crystal elastomers. Adv. Mater. 32 (2020) 2000609. | DOI

[38] A. Logg, K.-A. Mardal and G. Wells, Automated solution of differential equations by the finite element method: The FEniCS book, vol. 84. Springer Science & Business Media (2012). | Zbl | MR | DOI

[39] L. Longa, D. Monselesan and H.-R. Trebin, An extension of the Landau-Ginzburg-de Gennes theory for liquid crystals. Liquid Cryst. 2 (1987) 769–796. | DOI

[40] P. Plucinsky, B. A. Kowalski, T. J. White and K. Bhattacharya, Patterning nonisometric origami in nematic elastomer sheets. Soft Matter 14 (2018) 3127–3134. | DOI

[41] P. Plucinsky, M. Lemm and K. Bhattacharya, Programming complex shapes in thin nematic elastomer and glass sheets. Phys. Rev. E 94 (2016) 010701. | DOI

[42] H. Vandeparre, S. Gabriele, F. Brau, C. Gay, K. K. Parker and P. Damman, Hierarchical wrinkling patterns. Soft Matter 6 (2010) 5751–5756. | DOI

[43] E. G. Virga, Variational theories for liquid crystals, vol. 8. CRC Press (1995). | MR | Zbl

[44] M. Warner and E. M. Terentjev, Liquid Crystal Elastomers. Oxford University Press (2003). | DOI

[45] T. J. White and D. J. Broer, Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers. Nat. Mater. 14 (2015) 1087–1098. | DOI

Cité par Sources :