Continuous feedback stabilization of nonlinear control systems by composition operators
ESAIM: Control, Optimisation and Calculus of Variations, Tome 28 (2022), article no. 30

The ability to asymptotically stabilize control systems through the use of continuous feedbacks is an important topic of control theory and applications. In this paper, we provide a complete characterization of continuous feedback stabilizability using a new approach that does not involve control Lyapunov functions. To do so, we first develop a slight generalization of feedback stabilization using composition operators and characterize continuous stabilizability in this expanded setting. Employing the obtained characterizations in the more general context, we establish relationships between continuous stabiliza|bility in the conventional sense and in the generalized composition operator sense. This connection allows us to show that the continuous stabilizability of a control system is equivalent to the stability of an associated system formed from a local section of the vector field inducing the control system. That is, we reduce the question of continuous stabilizability to that of stability. Moreover, we provide a universal formula describing all possible continuous stabilizing feedbacks for a given system.

DOI : 10.1051/cocv/2022022
Classification : 93D15, 93D20, 93C10, 49J53
Keywords: Nonlinear control systems, feedback stabilization, composition operators, asymptotic stabilizability, implicit function theorems
@article{COCV_2022__28_1_A30_0,
     author = {Christopherson, Bryce A. and Mordukhovich, Boris S. and Jafari, Farhad},
     title = {Continuous feedback stabilization of nonlinear control systems by composition operators},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {28},
     doi = {10.1051/cocv/2022022},
     mrnumber = {4428675},
     zbl = {1492.93135},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/cocv/2022022/}
}
TY  - JOUR
AU  - Christopherson, Bryce A.
AU  - Mordukhovich, Boris S.
AU  - Jafari, Farhad
TI  - Continuous feedback stabilization of nonlinear control systems by composition operators
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2022
VL  - 28
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/cocv/2022022/
DO  - 10.1051/cocv/2022022
LA  - en
ID  - COCV_2022__28_1_A30_0
ER  - 
%0 Journal Article
%A Christopherson, Bryce A.
%A Mordukhovich, Boris S.
%A Jafari, Farhad
%T Continuous feedback stabilization of nonlinear control systems by composition operators
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2022
%V 28
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2022022/
%R 10.1051/cocv/2022022
%G en
%F COCV_2022__28_1_A30_0
Christopherson, Bryce A.; Mordukhovich, Boris S.; Jafari, Farhad. Continuous feedback stabilization of nonlinear control systems by composition operators. ESAIM: Control, Optimisation and Calculus of Variations, Tome 28 (2022), article no. 30. doi: 10.1051/cocv/2022022

[1] Z. Artstein, Stabilization with relaxed controls. Nonlinear Anal. 7 (1983) 1163–1173. | MR | Zbl | DOI

[2] U. Boscain and B. Piccoli, Optimal Syntheses for Control Systems on 2-D Manifolds. Springer (2004). | MR | Zbl

[3] P. Braun, L. Grüne, C. M. Kellett, Complete instability of differential inclusions using Lyapunov methods. IEEE Conf. Decis. Control (2018) 718–724.

[4] R. W. Brockett, Asymptotic stability and feedback stabilization. Differ. Geometr. Control Theory 27 (1983) 181–191. | MR | Zbl

[5] C. I. Byrnes, On Brockett’s necessary condition for stabilizability and the topology of Lyapunov functions on R N . Commun. Inf. Syst. 8 (2008) 333–352. | MR | Zbl | DOI

[6] B. A. Christopherson, F. Jafari and B. S. Mordukhovich, A variational approach to local asymptotic and exponential stabilization of nonlinear systems. SN Operat. Res. Forum (2020) DOI: 10.1007/s43069-020-0003-z. | MR | Zbl

[7] F. Clarke, Lyapunov functions and discontinuous stabilizing feedback. Annu. Rev. Control 35 (2011) 13–33. | DOI

[8] J. M. Coron, A necessary condition for feedback stabilization. Syst. Control Lett. 14 (1990) 227–232. | MR | Zbl | DOI

[9] J. M. Coron, Control and Nonlinearity. American Mathematical Society (2007). | MR | Zbl

[10] E. P. Ryan, On Brockett’s condition for smooth stabilizability and its necessity in a context of nonsmooth feedback. SIAM J. Control Optim. 32 (1994) 1597–1604. | MR | Zbl | DOI

[11] R. Gupta, F. Jafari, R. J. Kipka and B. S. Mordukhovich, Linear openness and feedback stabilization of nonlinear control systems. Disc. Cont. Dyn. Systs. Ser. S 11 (2018) 1103–1119. | MR | Zbl

[12] R. Goebel, C. Prieur and A. R. Teel, Smooth patchy control Lyapunov functions. Automatica 45 (2009) 675–683. | MR | Zbl | DOI

[13] H. Hermes, Asymptotically stabilizing feedback controls and the nonlinear regulator problem. SIAM J. Control Optim. 29 (1991) 185–196. | MR | Zbl | DOI

[14] C. Jammazi, M. Zaghdoudi and M. Boutayeb, On the global polynomial stabilization of nonlinear dynamical systems. Nonlinear Anal.: Real World Appl. 46 (2019) 29–42. | MR | Zbl | DOI

[15] K. Jittorntrum, An implicit function theorem. J. Optim. Theory Appl. 25 (1978) 575–577. | MR | Zbl | DOI

[16] S. Kumagai, An implicit function theorem: comment. J. Optim. Theory Appl. 31 (1980) 285–288. | MR | Zbl | DOI

[17] G. A. Lafferriere and E. D. Sontag, Remarks on control lyapunov functions for discontinuous stabilizing feedback. Proc. 32nd IEEE Conf. Decis. Control (1993) 306–308. | DOI

[18] Y. S. Ledyaev and E. D. Sontag, A Lyapunov characterization of robust stabilization. Nonlinear Anal. 37 (1999) 813–840. | MR | Zbl | DOI

[19] B. S. Mordukhovich, Variational Analysis and Applications. Springer (2018). | MR | Zbl | DOI

[20] S. M. Onishchenko, To the problem of the nonlinear systems stabilizability. J. Autom. Inf. Sci. 43 (2011) 1–12. | DOI

[21] S. M. Onishchenko, Analysis of the conditions of controllability and stabilizability of nonlinear dynamical systems. J. Autom. Inf. Sci. 43 (2011) 10–22. | DOI

[22] E. P. Ryan, On Brockett’s condition for smooth stabilizability and its necessity in a context of nonsmooth feedback. SIAM J. Control Optim. 32 (1994) 1597–1604. | MR | Zbl | DOI

[23] T. Sadikhov and W. M. Haddad, A universal feedback controller for discontinuous dynamical systems using nonsmooth control Lyapunov functions. J. Dyn. Syst. Measur. Control 137 (2015) 041005. | DOI

[24] U. Schreiber, M. S. New and T. Bartels, Saturated Subset. nLab, http://ncatlab.org/nlab/show/saturatedTsubset (version: 2017-05-21).

[25] E. D. Sontag, Mathematical Control Theory: Deterministic Finite Dimensional Systems. Springer (1998). | MR | Zbl | DOI

[26] H. J. Sussmann, E. D. Sontag and D. Y. Yang, A general result on the stabilization of linear systems using bounded controls. IEEE Trans. Automat. Control 39 (1994) 2411–2425. | MR | Zbl | DOI

[27] E. D. Sontag, Stability and stabilization: discontinuities and the effect of disturbances. In: Nonlinear Anal. Differ. Equ. Control, NATO Science Series 528. Springer, Dordrecht (1999) 551–598. | MR | Zbl

[28] S. Willard, General Topology. Courier Corporation (2004). | Zbl

[29] J. Zabczyk, Some comments on stabilizability. J. Appl. Math. Optim. 19 (1989) 1–9. | MR | Zbl | DOI

[30] V. I. Zubov, Methods of A.M. Lyapunov and Their Applications. Edited by P. Noordhoff (1964). | MR | Zbl

Cité par Sources :

Research of Boris S. Mordukhovich was partly supported by the USA National Science Foundation under grants DMS-1512846 and DMS-1808978, by the USA Air Force Office of Scientific Research under grant #15RT04, and by the Australian Research Council under Discovery Project DP-190100555.