Smooth Output-to-State Stability for multistable systems on compact manifolds
ESAIM: Control, Optimisation and Calculus of Variations, Tome 28 (2022), article no. 31

Output-to-State Stability (OSS) is a notion of detectability for nonlinear systems that is formulated in the ISS framework. We generalize the notion of OSS for systems which possess a decomposable invariant set and evolve on compact manifolds. Building upon a recent extension of the ISS theory for this very class of [systems [D. Angeli and D. Efimov, IEEE Trans. Autom. Control 60 (2015) 3242–3256.], the paper provides equivalent characterizations of the OSS property in terms of asymptotic estimates of the state trajectories and, in particular, in terms of existence of smooth Lyapunov-like functions.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/cocv/2022021
Classification : 93B07, 93D05, 93D20, 93D25, 34D23, 34D35, 34D45, 37C70
Keywords: Nonlinear stability, detectability, Output-to-State Stability, multistability, systems on manifolds
@article{COCV_2022__28_1_A31_0,
     author = {Forni, Paolo and Angeli, David},
     title = {Smooth {Output-to-State} {Stability} for multistable systems on compact manifolds},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {28},
     doi = {10.1051/cocv/2022021},
     mrnumber = {4428678},
     zbl = {1490.93110},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/cocv/2022021/}
}
TY  - JOUR
AU  - Forni, Paolo
AU  - Angeli, David
TI  - Smooth Output-to-State Stability for multistable systems on compact manifolds
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2022
VL  - 28
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/cocv/2022021/
DO  - 10.1051/cocv/2022021
LA  - en
ID  - COCV_2022__28_1_A31_0
ER  - 
%0 Journal Article
%A Forni, Paolo
%A Angeli, David
%T Smooth Output-to-State Stability for multistable systems on compact manifolds
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2022
%V 28
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2022021/
%R 10.1051/cocv/2022021
%G en
%F COCV_2022__28_1_A31_0
Forni, Paolo; Angeli, David. Smooth Output-to-State Stability for multistable systems on compact manifolds. ESAIM: Control, Optimisation and Calculus of Variations, Tome 28 (2022), article no. 31. doi: 10.1051/cocv/2022021

[1] R. Abraham, J. Marsden and T. Ratiu, Manifolds, Tensor Analysis, and Applications. Springer-Verlag, New York, USA (1988). | MR | Zbl | DOI

[2] D. Angeli and D. Efimov, Characterizations of input-to-state stability for systems with multiple invariant sets. IEEE Trans. Autom. Control 60 (2015) 3242–3256. | MR | Zbl | DOI

[3] D. Angeli, B. Ingalls, E. Sontag and Y. Wang, Separation principles for input-output and integral-input to state stability. SIAM J. Control Optim. 43 (2004) 256–276. | MR | Zbl | DOI

[4] F. H. Clarke, Y. S. Ledyaev, R. J. Stern and P. R. Wolenski, Nonsmooth Analysis and Control Theory. Springer-Verlag New York, Inc., Secaucus, NJ, USA (1998). | MR | Zbl

[5] M. P. Do Carmo, Riemannian Geometry. Birkhäuser, Birkhäuser Basel (1992). | MR | Zbl | DOI

[6] M. Krichman, E. Sontag and Y. Wang, Input-output-to-state stability. SIAM J. Control Optim. 39 (2001) 1874–1928. | MR | Zbl | DOI

[7] M. Kunzinger, H. Schichl, R. Steinbauer and J. A. Vickers, Global Gronwall estimates for integral curves on riemannian manifolds. Rev. Mate. Complut. 19 (2006) 133–137. | MR | Zbl

[8] Y. Lin, E. D. Sontag and Y. Wang, A smooth converse lyapunov theorem for robust stability. SIAM J. Control Optim. 34 (1996) 124–160. | MR | Zbl | DOI

[9] L. Markus, Asymptotically autonomous differential systems. Contributions to the Theory of Nonlinear Oscillations III. S. Lefschetz 36 (1956) 17–29. | MR | Zbl

[10] E. Minguzzi, The equality of mixed partial derivatives under weak differentiability conditions. Real Anal. Exchange 40 (2015) 81–98. | MR | Zbl | DOI

[11] Z. Nitecki and M. Shub, Filtrations, decompositions, and explosions. Am,. J. Math. 97 (1975) 1029–1047. | MR | Zbl | DOI

[12] W. Rudin, Principles of mathematical analysis. International series in pure and applied mathematics, McGraw-Hill (1964). | Zbl | MR

[13] M. Shub, Global Stability of Dynamical Systems. Springer-Verlag, New York, NY (1987). | MR | Zbl | DOI

[14] E. D. Sontag, Comments on integral variants of ISS. Syst. Control Lett. 34 (1998) 93–100. | MR | Zbl | DOI

[15] E. D. Sontag, Input to state stability: Basic concepts and results, in Nonlinear and Optimal Control Theory. In vol. 1932 of Lecture Notes in Mathematics. Springer (2006) 163–220. | MR | DOI

[16] E. D. Sontag and Y. Wang, Detectability of nonlinear systems, in Proc. Conf. on Information Science and Systems (CISS 96), Princeton, NJ (1996) 1031–1036.

[17] E. D. Sontag and Y. Wang, Output-to-state stability and detectability of nonlinear systems. Syst. Control Lett. 29 (1997) 279–290. | MR | Zbl | DOI

Cité par Sources :