Minimax solutions of Hamilton–Jacobi equations with fractional coinvariant derivatives
ESAIM: Control, Optimisation and Calculus of Variations, Tome 28 (2022), article no. 23

We consider a Cauchy problem for a Hamilton–Jacobi equation with coinvariant derivatives of an order α ∈ (0, 1). Such problems arise naturally in optimal control problems for dynamical systems which evolution is described by differential equations with the Caputo fractional derivatives of the order α. We propose a notion of a generalized in the minimax sense solution of the considered problem. We prove that a minimax solution exists, is unique, and is consistent with a classical solution of this problem. In particular, we give a special attention to the proof of a comparison principle, which requires construction of a suitable Lyapunov–Krasovskii functional.

DOI : 10.1051/cocv/2022017
Classification : 35F21, 35D99, 26A33
Keywords: Hamilton–Jacobi equations, coinvariant derivatives, minimax solutions, Caputo fractional derivatives
@article{COCV_2022__28_1_A23_0,
     author = {Gomoyunov, Mikhail Igorevich},
     title = {Minimax solutions of {Hamilton{\textendash}Jacobi} equations with fractional coinvariant derivatives},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {28},
     doi = {10.1051/cocv/2022017},
     mrnumber = {4395151},
     zbl = {1486.35136},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/cocv/2022017/}
}
TY  - JOUR
AU  - Gomoyunov, Mikhail Igorevich
TI  - Minimax solutions of Hamilton–Jacobi equations with fractional coinvariant derivatives
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2022
VL  - 28
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/cocv/2022017/
DO  - 10.1051/cocv/2022017
LA  - en
ID  - COCV_2022__28_1_A23_0
ER  - 
%0 Journal Article
%A Gomoyunov, Mikhail Igorevich
%T Minimax solutions of Hamilton–Jacobi equations with fractional coinvariant derivatives
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2022
%V 28
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2022017/
%R 10.1051/cocv/2022017
%G en
%F COCV_2022__28_1_A23_0
Gomoyunov, Mikhail Igorevich. Minimax solutions of Hamilton–Jacobi equations with fractional coinvariant derivatives. ESAIM: Control, Optimisation and Calculus of Variations, Tome 28 (2022), article no. 23. doi: 10.1051/cocv/2022017

[1] Y. V. Averboukh, A minimax approach to mean field games. Sb. Math. 206 (2015) 893–920. | Zbl | MR | DOI

[2] R. A. Bandaliyev, I. G. Mamedov, M. J. Mardanov and T. K. Melikov, Fractional optimal control problem for ordinary differential equation in weighted Lebesgue spaces. Optim. Lett. 14 (2020) 1519–1532. | MR | Zbl | DOI

[3] E. Bayraktar and C. Keller, Path-dependent Hamilton–Jacobi equations in infinite dimensions. J. Funct. Anal. 275 (2018) 2096–2161. | MR | Zbl | DOI

[4] M. Bergounioux and L. Bourdin, Pontryagin maximum principle for general Caputo fractional optimal control problems with Bolza cost and terminal constraints. ESAIM: COCV 26 (2020) 35. | MR | Zbl | Numdam

[5] A. G. Butkovskii, S. S. Postnov and E. A. Postnova, Fractional integro-differential calculus and its control-theoretical applications. II. Fractional dynamic systems: modeling and hardware implementation. Autom. Remote Control 74 (2013) 725–749. | MR | Zbl | DOI

[6] M. G. Crandall, H. Ishii and P.-L. Lions, Uniqueness of viscosity solutions of Hamilton–Jacobi equations revisited. J. Math. Soc. Jpn. 39 (1987) 581–596. | MR | Zbl | DOI

[7] M. G. Crandall and P.-L. Lions, Viscosity solutions of Hamilton–Jacobi equations. Trans. Amer. Math. Soc. 277 (1983) 1–42. | MR | Zbl | DOI

[8] K. Diethelm, The analysis of fractional differential equations: an application-oriented exposition using differential operators of Caputo type. Lecture Notes in Mathematics, vol 2004. Springer, Berlin-Heidelberg (2010). | MR | Zbl | DOI

[9] A. F. Filippov, Differential equations with discontinuous righthand sides: control systems. Math. Appl. (Soviet Ser.), vol 18. Kluwer Academic Publishers, Dordrecht, The Netherlands (1988). | MR | Zbl

[10] A. Flores-Tlacuahuac and L. T. Biegler, Optimization of fractional order dynamic chemical processing systems. Ind. Eng. Chem. Res. 53 (2014) 5110–5127. | DOI

[11] M. I. Gomoyunov, Fractional derivatives of convex Lyapunov functions and control problems in fractional order systems. Fract. Calc. Appl. Anal. 21 (2018) 1238–1261. | MR | Zbl | DOI

[12] M. I. Gomoyunov, Dynamic programming principle and Hamilton-Jacobi-Bellman equations for fractional-order systems. SIAM J. Control Optim. 58 (2020) 3185–3211. | MR | Zbl | DOI

[13] M. I. Gomoyunov, Optimal control problems with a fixed terminal time in linear fractional-order systems. Arch. Control Sci. 30 (2020) 721–744. | MR | Zbl

[14] M. I. Gomoyunov, Solution to a zero-sum differential game with fractional dynamics via approximations. Dyn. Games Appl. 10 (2020) 417–443. | MR | Zbl | DOI

[15] M. I. Gomoyunov, To the theory of differential inclusions with Caputo fractional derivatives. Diff. Equat. 56 (2020) 1387–1401. | MR | Zbl | DOI

[16] M. I. Gomoyunov, On differentiability of solutions of fractional differential equations with respect to initial data. Preprint (2021). | arXiv | MR | Zbl

[17] M. I. Gomoyunov, N. Y. Lukoyanov and A. R. Plaksin, Path-dependent Hamilton–Jacobi equations: the minimax solutions revised. Appl. Math. Optim. 84 (2021) S1087–S1117. | MR | Zbl | DOI

[18] D. Idczak and S. Walczak, On a linear-quadratic problem with Caputo derivative. Opuscula Math. 36 (2016) 49–68. | MR | Zbl | DOI

[19] T. Kaczorek, Minimum energy control of fractional positive electrical circuits with bounded inputs. Circuits Syst. Signal Process. 35 (2016) 1815–1829. | MR | Zbl | DOI

[20] R. Kamocki and M. Majewski, Fractional linear control systems with Caputo derivative and their optimization. Optim. Control Appl. Meth. 36 (2014) 953–967. | MR | Zbl | DOI

[21] H. Kheiri and M. Jafari, Optimal control of a fractional-order model for the HIV/AIDS epidemic. Int. J. Biomath. 11 (2018) 1850086. | MR | Zbl | DOI

[22] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and applications of fractional differential equations. North-Holland Math. Stud., vol 204. Elsevier, Amsterdam (2006). | MR | Zbl

[23] A. V. Kim, Functional differential equations: application of i-smooth calculus. Math. Appl., vol 479. Kluwer Academic Publishers, Dordrecht, The Netherlands (1999). | MR | Zbl

[24] A. N. Krasovskii and N. N. Krasovskii, Control under lack of information. Systems Control Found. Appl., Birkhäuser, Boston (1995). | MR | DOI

[25] N. N. Krasovskii, On the problem of the unification of differential games. Dokl. Akad. Nauk SSSR 226 (1976) 1260–1263. | MR | Zbl

[26] N. N. Krasovskiĭ and A. I. Subbotin, Game-theoretical control problems. Springer Ser. Soviet Math., Springer, New York (1988). | MR | Zbl

[27] V. A. Kubyshkin and S. S. Postnov, Optimal control problem for a linear stationary fractional order system in the form of a problem of moments: problem setting and a study. Autom. Remote Control 75 (2014) 805–817. | MR | Zbl | DOI

[28] A. B. Kuržanskiĭ, The existence of solutions of equations with after effect. Differ. Uravn. 6 (1970) 1800–1809 (in Russian). | MR | Zbl

[29] W. Li, S. Wang and V. Rehbock, Numerical solution of fractional optimal control. J. Optim. Theory Appl. 180 (2019) 556–573. | MR | Zbl | DOI

[30] P. Lin and J. Yong, Controlled singular Volterra integral equations and Pontryagin maximum principle. SIAM J. Control Optim. 58 (2020) 136–164. | MR | Zbl | DOI

[31] N. Y. Lukoyanov, Functional Hamilton–Jacobi type equations in ci-derivatives for systems with distributed delays. Nonlinear Funct. Anal. Appl. 8 (2003) 365–397. | MR | Zbl

[32] N. Y. Lukoyanov, Functional Hamilton–Jacobi type equations with ci-derivatives in control problems with hereditary information, Nonlinear Funct. Anal. Appl. 8 (2003) 535–555. | MR | Zbl

[33] N. Y. Lukoyanov, Strategies for aiming in the direction of invariant gradients. J. Appl. Math. Mech. 68 (2004) 561–574. | Zbl | MR | DOI

[34] N. Y. Lukoyanov, Differential inequalities for a nonsmooth value functional in control systems with an aftereffect. Proc. Steklov Inst. Math. 255 (2006) S103–S114. | MR | Zbl | DOI

[35] N. Y. Lukoyanov, On viscosity solution of functional Hamilton–Jacobi type equations for hereditary systems. Proc. Steklov Inst. Math. 259 (2007) S190–S200. | Zbl | DOI

[36] N. Y. Lukoyanov, Minimax and viscosity solutions in optimization problems for hereditary systems. Proc. Steklov Inst. Math. 269 (2010) S214–S225. | Zbl | DOI

[37] N. Y. Lukoyanov, Functional Hamilton–Jacobi equations and control problems with hereditary information. Ural Federal University Publishing, Ekaterinburg, Russia (2011) (in Russian).

[38] N. Y. Lukoyanov, M. I. Gomoyunov and A. R. Plaksin, Hamilton–Jacobi functional equations and differential games for neutral-type systems. Dokl. Math. 96 (2017) 654–657. | Zbl | MR | DOI

[39] N. Y. Lukoyanov and A. R. Plaksin, Stable functionals of neutral-type dynamical systems. Proc. Steklov Inst. Math. 304 (2019) 205–218. | Zbl | MR | DOI

[40] I. Matychyn and V. Onyshchenko, Optimal control of linear systems with fractional derivatives. Fract. Calc. Appl. Anal. 21 (2018) 134–150. | MR | Zbl | DOI

[41] K. S. Miller and B. Ross, An introduction to the fractional calculus and fractional differential equations. A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York (1993). | MR | Zbl

[42] A. R. Plaksin, Minimax solution of functional Hamilton–Jacobi equations for neutral type systems. Differ. Equ. 55 (2019) 1475–1484. | MR | Zbl | DOI

[43] I. Podlubny, Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. Math. Sci. Engrg., vol 198. Academic Press, Inc., San Diego, CA (1999). | MR | Zbl

[44] B. Ross, S. G. Samko and E. R. Love, Functions that have no first order derivative might have fractional derivatives of all orders less than one. Real Anal. Exchange 20 (1994–1995) 140–157. | MR | Zbl | DOI

[45] A. B. Salati, M. Shamsi and D. F. M. Torres, Direct transcription methods based on fractional integral approximation formulas for solving nonlinear fractional optimal control problems. Commun. Nonlinear Sci. Numer. Simul. 67 (2019) 334–350. | MR | Zbl | DOI

[46] S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional integrals and derivatives: theory and applications. Gordon and Breach Science Publishers, Yverdon, Switzerland (1993). | MR | Zbl

[47] B. Sendov, Hausdorff approximations. Kluwer Academic Publishers, Dordrecht, The Netherlands (1990). | MR | Zbl | DOI

[48] A. I. Subbotin, Generalized solutions of first order PDEs: the dynamical optimization perspective. Systems Control Found. Appl., Birkhäuser, Basel (1995). | MR | DOI

[49] A. I. Subbotin, Minimax solutions of first–order partial differential equations. Russ. Math. Surv. 51 (1996) 283–313. | Zbl | MR | DOI

[50] R. Toledo-Hernandez, V. Rico-Ramirez, R. Rico-Martinez, S. Hernandez-Castro and U. M. Diwekar, A fractional calculus approach to the dynamic optimization of biological reactive systems. Part II: Numerical solution of fractional optimal control problems. Chem. Eng. Sci. 117 (2014) 239–247. | DOI

[51] S. S. Zeid, S. Effati and A. V. Kamyad, Approximation methods for solving fractional optimal control problems. Comp. Appl. Math. 37 (2018) 158–182. | MR | Zbl | DOI

Cité par Sources :

This work was supported by RSF (project no. 19-71-00073).