Optimal Borel measure controls for the two-dimensional stationary Boussinesq system
ESAIM: Control, Optimisation and Calculus of Variations, Tome 28 (2022), article no. 22

We analyze an optimal control problem for the stationary two-dimensional Boussinesq system with controls taken in the space of regular Borel measures. Such measure-valued controls are known to produce sparse solutions. First-order and second-order necessary and sufficient optimality conditions are established. Following an optimize-then-discretize strategy, the corresponding finite element approximation will be solved by a semi-smooth Newton method initialized by a continuation strategy. The controls are discretized by finite linear combinations of Dirac measures concentrated at the nodes associated with the degrees of freedom for the mini-finite element.

DOI : 10.1051/cocv/2022016
Classification : 49J20, 49K20, 49M15
Keywords: Boussinesq system, Borel measures, Sparse controls, optimality conditions, finite elements, semi-smooth Newton algorithm
@article{COCV_2022__28_1_A22_0,
     author = {Peralta, Gilbert},
     title = {Optimal {Borel} measure controls for the two-dimensional stationary {Boussinesq} system},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {28},
     doi = {10.1051/cocv/2022016},
     mrnumber = {4395150},
     zbl = {1485.49011},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/cocv/2022016/}
}
TY  - JOUR
AU  - Peralta, Gilbert
TI  - Optimal Borel measure controls for the two-dimensional stationary Boussinesq system
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2022
VL  - 28
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/cocv/2022016/
DO  - 10.1051/cocv/2022016
LA  - en
ID  - COCV_2022__28_1_A22_0
ER  - 
%0 Journal Article
%A Peralta, Gilbert
%T Optimal Borel measure controls for the two-dimensional stationary Boussinesq system
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2022
%V 28
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2022016/
%R 10.1051/cocv/2022016
%G en
%F COCV_2022__28_1_A22_0
Peralta, Gilbert. Optimal Borel measure controls for the two-dimensional stationary Boussinesq system. ESAIM: Control, Optimisation and Calculus of Variations, Tome 28 (2022), article no. 22. doi: 10.1051/cocv/2022016

[1] F. Abergel and R. Temam, On some control problems in fluid mechanics. Theoret. Comput. Fluid Dyn. 1 (1990) 303–325. | DOI

[2] R. A. Adams, Sobolev Spaces. Academic Press, New York (1975). | MR | Zbl

[3] D. N. Arnold, F. Brezzi, and M. Fortin, A stable finite element for the Stokes equations. Calcolo 21 (1984) 337–44. | MR | Zbl | DOI

[4] J. L. Boldrini, E. Fernández-Cara and M. A. Rojas-Medar, An optimal control problem for a generalized Boussinesq model: the time dependent case. Rev. Mat. Complete. 20 (2007) 339–366. | MR | Zbl

[5] E. Casas, C. Clason and K. Kunisch, Approximation of elliptic control problems in measure spaces with sparse solutions. SIAM J. Control Optim. 50 (2012) 1735–52. | MR | Zbl | DOI

[6] E. Casas, C. Clason and K. Kunisch, Parabolic control problems in measure spaces with sparse solutions. SIAM J. Control Optim. 51 (2013) 28–63. | MR | Zbl | DOI

[7] E. Casas and K. Kunisch, Optimal control of semilinear elliptic equations in measure spaces. SIAM J. Control Optim. 52 (2014) 339–64. | MR | Zbl | DOI

[8] E. Casas and K. Kunisch, Optimal control of the two-dimensional stationary Navier–Stokes equations with measure valued controls. SIAM J. Control Optim. 57 (2019) 1328–54. | MR | Zbl | DOI

[9] E. Casas and K. Kunisch, Parabolic control problems in space-time measure spaces. ESAIM: COCV 22 (2016) 355–70. | MR | Zbl | Numdam

[10] C. Clason and K. Kunisch, A duality-based approach to elliptic control problems in non-reflexive Banach spaces. ESAIM: COCV 17 (2011) 243–66. | MR | Numdam | Zbl

[11] A. Ern and J.-L. Guermond, Theory and Practice of Finite Elements. Springer (2004). | MR | Zbl | DOI

[12] G. Galdi, An Introduction to the Mathematical Theory of the Navier–Stokes Equations. Springer, New York (2011). | MR | Zbl

[13] V. Girault and P. A. Raviart, Finite Element Methods for Navier–Stokes Equations: Theory and Algorithms. Springer-Verlag, Berlin (1986). | MR | DOI

[14] M. Hinze and U. Matthes, Optimal and model predictive control of the Boussinesq approximation, in Control of Coupled Partial Differential Equations, edited by K. Kunisch, J. Sprekels, G. Leugering and F. Tröltzsch. Birkhäuser Basel (2007).

[15] K. Ito and S. S. Ravindran, Optimal control of thermally convected fluid flows. SIAM J. Sci. Comput. 19 (1998) 1847–1869. | MR | Zbl | DOI

[16] H. Kim, Existence and regularity of very weak solutions of the stationary Navier–Stokes equations. Arch. Ration. Mech. Anal. 193 (2009) 117–52. | MR | Zbl | DOI

[17] H. Kim, The existence and uniqueness of very weak solutions of the stationary Boussinesq system. Nonlinear Anal. Real World Appl. 75 (2012) 317–30. | MR | DOI

[18] K. Kunisch, K. Pieper and B. Vexler, Measure valued directional sparsity for parabolic optimal control problems. SIAM J. Control Optim. 52 (2014) 3078–3108. | MR | Zbl | DOI

[19] K. Kunisch, P. Trautmann and B. Vexler, Optimal control of the undamped linear wave equation with measure valued controls. SIAM J. Control Optim. 54 (2016) 1212–44. | MR | Zbl | DOI

[20] B. Kummer, Newton’s method based on generalized derivatives for nonsmooth functions: Convergence analysis, edited by Oettli W., Pallaschke D. Advances in Optimization. Lecture Notes in Economics and Mathematical Systems, vol 382. Springer, Berlin, Heidelberg (1992) 171–94. | MR | Zbl

[21] H.-C. Lee and B. C. Shin, Piecewise optimal distributed controls for 2D Boussinesq equations. Math. Methods Appl. Sci. 23 (2000) 227–54. | MR | Zbl | DOI

[22] H.-C. Lee and O. Yu. Imanuvilov, Analysis of optimal control problems for the 2-D stationary Boussinesq equations. J. Math. Anal. Appl. 242 (2000) 191–211. | MR | Zbl | DOI

[23] J. M. Mihaljan, A rigorous exposition of the Boussinesq approximations applicable to a thin layer of fluid. Astrophys. J. 136 (1962) 1126–33. | MR | DOI

[24] L. Qi and J. Sun, A nonsmooth version of Newton’s method. Math. Program. 58 (1993) 353–67. | MR | Zbl | DOI

[25] W. Rudin, Real and Complex Analysis. McGraw-Hill Book Co., London (1970). | MR

[26] P. A. Tapia, $$, Ph.D. thesis, University of Chile (2015).

[27] F. Tröltzsch and D. Wachsmuth, Second-order sufficient optimality conditions for the optimal control of Navier–Stokes equations. ESAIM: COCV 12 (2006) 353–67. | MR | Numdam | Zbl

[28] E. Zeidler, Nonlinear Functional Analysis and its Applications I, Springer-Verlag, New York (1986). | MR | Zbl

Cité par Sources :