New results concerning the hierarchical control of linear and semilinear parabolic equations
ESAIM: Control, Optimisation and Calculus of Variations, Tome 28 (2022), article no. 14

This paper deals with the application of multiple strategies to control some parabolic PDEs. We assume that we can act on the system through a hierarchy of distributed controls: with a first control (a follower), we drive the state exactly to zero; then, with an additional control (the leader), we minimize a prescribed cost functional. That means that we invert the roles played by leaders and followers in the recent literature. We study linear and semilinear problems. More precisely, we prove the existence (and uniqueness in the linear case) of a leader-follower couple. Then, we deduce an appropriate optimality system that must be satisfied by the controls and the corresponding state and adjoint states. We also indicate some generalizations to other controls, PDEs and systems. In particular, we establish similar existence and optimality results for hierarchical-biobjective (Pareto-Stackelberg) control problems, where there are two cost functionals and two independent leader controls whose main task is to find an associated Pareto equilibrium and one common follower in charge of null controllability.

DOI : 10.1051/cocv/2022011
Classification : 35Q93, 49J20, 49K20, 93A13, 93B05, 93C20
Keywords: Stackelberg strategies, optimal control, controllability, Carleman inequalities, linear and semilinear parabolic PDEs
@article{COCV_2022__28_1_A14_0,
     author = {Calsavara, Bianca M. R. and Fern\'andez-Cara, Enrique and de Teresa, Luz and Villa, Jos\'e Antonio},
     title = {New results concerning the hierarchical control of linear and semilinear parabolic equations},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {28},
     doi = {10.1051/cocv/2022011},
     mrnumber = {4385096},
     zbl = {1492.35389},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/cocv/2022011/}
}
TY  - JOUR
AU  - Calsavara, Bianca M. R.
AU  - Fernández-Cara, Enrique
AU  - de Teresa, Luz
AU  - Villa, José Antonio
TI  - New results concerning the hierarchical control of linear and semilinear parabolic equations
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2022
VL  - 28
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/cocv/2022011/
DO  - 10.1051/cocv/2022011
LA  - en
ID  - COCV_2022__28_1_A14_0
ER  - 
%0 Journal Article
%A Calsavara, Bianca M. R.
%A Fernández-Cara, Enrique
%A de Teresa, Luz
%A Villa, José Antonio
%T New results concerning the hierarchical control of linear and semilinear parabolic equations
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2022
%V 28
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2022011/
%R 10.1051/cocv/2022011
%G en
%F COCV_2022__28_1_A14_0
Calsavara, Bianca M. R.; Fernández-Cara, Enrique; de Teresa, Luz; Villa, José Antonio. New results concerning the hierarchical control of linear and semilinear parabolic equations. ESAIM: Control, Optimisation and Calculus of Variations, Tome 28 (2022), article no. 14. doi: 10.1051/cocv/2022011

[1] V. Alexéev, S. Fomine and V. Tikhomirov, Commande optimale, Mir, Moscow (1982). | MR

[2] F. Ammar-Kodjha, A. Benabdallah, M. González-Burgos and L. De Teresa, Recent results on the controllability of linear coupled parabolic problems: a survey. Math. Control Relat. Fields 1 (2011) 267–306. | MR | Zbl | DOI

[3] F. Araruna, B. S. V. Araújo and E. Fernández-Cara, Stackelberg-Nash null controllability for some linear and semilinear degenerate parabolic equations. Math. Control Signals Syst. 30 (2018) Art. 14, 31 pp. | MR | Zbl | DOI

[4] F. Araruna, E. Fernández-Cara, S. Guerrero and M. C. Santos, New results on the Stackelberg-Nash exact control of linear parabolic equations. Systems Control Lett. 104 (2017) 78–85. | MR | Zbl | DOI

[5] F. Araruna, E. Fernández-Cara and M. C. Santos, Stackelberg-Nash exact controllability for linear and semilinear parabolic equations. ESAIM: COCV 21 (2015) 835–856. | MR | Zbl | Numdam

[6] F. Boyer, On the penalised HUM approach and its applications to the numerical approximation of null-controls for parabolic problems, in CANUM 2012, Super-Besse, ESAIM Proc., EDP Sci., Les Ulis (2013). | MR | Zbl

[7] J. C. Cox and M. Rubinstein, Options Markets. Prentice-Hall, Englewood Cliffs, NJ (1985).

[8] J. I. Díaz, On the von Neumann problem and the approximate controllability of Stackelberg-Nash strategies for some environmental problems. Rev. R. Acad. Cien., Serie A. Math. 96 (2002) 343–356. | MR | Zbl

[9] J. I. Díaz and J.-L. Lions, On the approximate controllability of Stackelberg-Nash strategies. Ocean circulation and pollution control: a mathematical and numerical investigation (Madrid, 1997). Springer, Berlin (2004) 17–27. | MR

[10] E. Fernández-Cara and S. Guerrero, Global Carleman inequalities for parabolic systems and applications to controllability. SIAM J. Control Optim. 45 (2006) 1395–1446. | Zbl | DOI

[11] A. V. Fursikov and O. Y. Imanuvilov, Controllability of evolution equations, Lecture Note Series 34. Research Institute of Mathematics, Seoul National University, Seoul (1996). | MR | Zbl

[12] I. V. Girsanov, Lectures on mathematical theory of extremum problem, Lecture notes in Economics and mathematical systems 67. Springer-Verlag, Berlin (1972). | MR | Zbl

[13] F. Guillén-González, F. P. Marques-Lopes and M. A. Rojas-Medar, On the approximate controllability of Stackelberg-Nash strategies for Stokes equations. Proc. Amer. Math. Soc. 141 (2013) 1759–1773. | MR | Zbl | DOI

[14] O. Yu. Imanuvilov, J.-P. Puel and M. Yamamoto, Carleman estimates for parabolic equations with nonhomogeneous boundary conditions. Chin. Ann. Math. Ser. B 30 (2009) 333–378. | MR | Zbl | DOI

[15] J.-L. Lions, Contrôle de Pareto de systèmes distribués. Le cas d’évolution. C.R. Acad. Sc. Paris, série I 302 (1986) 413–417. | MR | Zbl

[16] J.-L. Lions, Some remarks on Stackelberg’s optimization. Math. Models Methods Appl. Sci. 4 (1994) 477–487. | MR | Zbl | DOI

[17] Y. Liu, T. Takahashi and M. Tucsnak, Single input controllability of a simplified fluid-structure interaction model. ESAIM: COCV 19 (2013) 20–42. | MR | Zbl | Numdam

[18] V. Pareto, Cours d’économie politique. Rouge, Laussane, Switzerland (1896).

[19] A. M. Ramos, R. Glowinski and J. Periaux, Pointwise control of the Burgers equation and related Nash equilibria problems: A computational approach. J. Optim. Theory Appl. 112 (2001) 499–516. | MR | Zbl | DOI

[20] A. M. Ramos, R. Glowinski and J. Periaux, Nash equilibria for the multiobjective control of linear partial differential equations. J. Optim. Theory Appl. 112 (2002) 457–498. | MR | Zbl | DOI

[21] S. M. Ross, An introduction to mathematical finance. Options and other topics. Cambridge University Press, Cambridge (1999). | MR | Zbl

[22] P. Wilmott, S. Howison, J. Dewynne, The mathematics of financial derivatives. Cambridge University Press, New York (1995). | MR | Zbl | DOI

Cité par Sources :