Hausdorff moment problem and nonlinear time optimality
ESAIM: Control, Optimisation and Calculus of Variations, Tome 28 (2022), article no. 15

A complete analytic solution for the time-optimal control problem for nonlinear control systems of the form 1 = u, x ˙ j =x 1 j-1 , j = 2, …, n, is obtained for arbitrary n. In the paper we present the following surprising observation: this nonlinear optimality problem leads to a truncated Hausdorff moment problem, which gives analytic tools for finding the optimal time and optimal controls. Being homogeneous, the mentioned system approximates affine systems from a certain class in the sense of time optimality. Therefore, the obtained results can be used for solving the time-optimal control problem for systems from this class.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/cocv/2022007
Classification : 49K15, 44A60, 93C10
Keywords: Nonlinear control system, time-optimal control problem, truncated Hausdorff moment problem
@article{COCV_2022__28_1_A15_0,
     author = {Sklyar, G. M. and Ignatovich, S. Yu.},
     title = {Hausdorff moment problem and nonlinear time optimality},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {28},
     doi = {10.1051/cocv/2022007},
     mrnumber = {4385097},
     zbl = {1485.49028},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/cocv/2022007/}
}
TY  - JOUR
AU  - Sklyar, G. M.
AU  - Ignatovich, S. Yu.
TI  - Hausdorff moment problem and nonlinear time optimality
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2022
VL  - 28
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/cocv/2022007/
DO  - 10.1051/cocv/2022007
LA  - en
ID  - COCV_2022__28_1_A15_0
ER  - 
%0 Journal Article
%A Sklyar, G. M.
%A Ignatovich, S. Yu.
%T Hausdorff moment problem and nonlinear time optimality
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2022
%V 28
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2022007/
%R 10.1051/cocv/2022007
%G en
%F COCV_2022__28_1_A15_0
Sklyar, G. M.; Ignatovich, S. Yu. Hausdorff moment problem and nonlinear time optimality. ESAIM: Control, Optimisation and Calculus of Variations, Tome 28 (2022), article no. 15. doi: 10.1051/cocv/2022007

[1] N. I. Akhiezer and M. G. Kreĭn, Some questions in the theory of moments (Russian). GONTI, Kharkov (1938). Translation: Translations of Mathematical Monographs 2, AMS (1962). | MR

[2] D. Cox, J. Little and D. O’Shea, Ideals, Varieties and Algorithms. An Introduction to Computational Algebraic Geometry and Commutative Algebra. Springer, Cham (2015). | MR | Zbl

[3] A. F. Filippov, On some questions in the theory of optimal regulation: existence of a solution of the problem of optimal regulation in the class of bounded measurable functions (Russian). Vestnik Moskov. Univ. Ser. Mat. Meh. Astr. Fiz. Him. (1959) 25–32. | MR | Zbl

[4] A. F. Filippov, On certain questions in the theory of optimal control. J. SIAM Control Ser. A 1 (1962) 76–84. | MR | Zbl

[5] M. Fliess, Fonctionnelles causales non linéaires et indéterminées non commutatives. Bull. Soc. math. France 109 (1981) 3–40. | MR | Zbl | Numdam | DOI

[6] F. Hausdorff, Summationsmethoden und Momentfolgen. I.; II. Math. Zeitsch. 9 (1921) 74–109, 280–299. | MR | JFM

[7] S. Y. Ignatovich, Explicit solution of the time-optimal control problem for one nonlinear three-dimensional system. Visnyk of V. N. Karazin Kharkiv National University, Ser. “Mathematics, Applied Mathematics and Mechanics” 83 (2016) 21–46. | Zbl

[8] V. I. Korobov and G. M. Sklyar, Time-optimality and the power moment problem (Russian). Mat. Sb. (N.S.) 134(176) (1987) 186–206. Translation: Math. USSR-Sb. 62 (1989) 185–206. | MR | Zbl

[9] V. I. Korobov and G. M. Sklyar, The Markov moment min-problem and time optimality (Russian). Sibirsk. Mat. Zh. 32 (1991) 60–71. Translation: Siberian Math. J. 32 (1991) 46–55. | Zbl | MR

[10] V. I. Korobov, G. M. Sklyar and S. Yu. Ignatovich, Solving of the polynomial systems arising in the linear time-optimal control problem. Commun. Math. Anal. Conf . 3 (2011) 153–171. | MR | Zbl

[11] N. N. Krasovskiĭ, On the theory of optimal control (Russian). Avtomat. i Telemeh. 18 (1957) 960–970. Translation: Autom. Remote Control 18 (1957) 1005–1016. | MR | Zbl

[12] N. N. Krasovskiĭ, Theory of control of motion: Linear systems (Russian). Nauka, Moscow (1968). | Zbl | MR

[13] M. G. Kreĭn and A. A. Nudel’Man, The Markov moment problem and extremal problems. Ideas and problems of P. L. Čebyšev and A. A. Markov and their further development (Russian). Translation: Translations of Mathematical Monographs 50, AMS (1977). | MR | Zbl | DOI

[14] F. Lukács, Verschärfung des ersten Mittelwertsatzes der Integralrechnung für rationale Polynome. Math. Zeitsch. 2 (1918) 295–305. | MR | JFM | DOI

[15] A. Markoff, Nouvelles applications des fractions continues. Math. Ann. 47 (1896) 579–597. | MR | JFM | DOI

[16] G. Pólya and G. Szegő, Problems and theorems in analysis. II. Springer (1976). | MR | Zbl

[17] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, The mathematical theory of optimal processes (Russian). John Wiley & Sons, Inc. (1962). | MR | Zbl

[18] G. M. Sklyar and S. Yu. Ignatovich, A classification of linear time-optimal control problems in a neighborhood of the origin. J. Math. Anal. Appl. 203 (1996) 791–811. | MR | Zbl | DOI

[19] G. M. Sklyar and S. Yu. Ignatovich, Moment approach to nonlinear time optimality. SIAM J. Control Optimiz. 38 (2000) 1707–1728. | MR | Zbl | DOI

[20] G. M. Sklyar and S. Yu. Ignatovich, Approximation of time-optimal control problems via nonlinear power moment min-problems. SIAM J. Control Optim. 42 (2003) 1325–1346. | MR | Zbl | DOI

[21] G. M. Sklyar, S. Yu. Ignatovich and S. E. Shugaryov, Time-optimal control problem for a special class of control systems: optimal controls and approximation in the sense of time optimality. J. Optim. Theory Appl. 165 (2015) 62–77. | MR | Zbl | DOI

Cité par Sources :

This work was financially supported by Polish National Science Centre grant no. 2017/25/B/ST1/01892.