A consistent approximation of the total perimeter functional for topology optimization algorithms
ESAIM: Control, Optimisation and Calculus of Variations, Tome 28 (2022), article no. 18

This article revolves around the total perimeter functional, one particular version of the perimeter of a shape Ω contained in a fixed computational domain D measuring the total area of its boundary Ω, as opposed to its relative perimeter, which only takes into account the regions of Ω strictly inside D. We construct and analyze approximate versions of the total perimeter which make sense for general “density functions” u, as generalized characteristic functions of shapes. Their use in the context of density-based topology optimization is particularly convenient insofar as they do not involve the gradient of the optimized function u. Two different constructions are proposed: while the first one involves the convolution of the function u with a smooth mollifier, the second one is based on the resolution of an elliptic boundary-value problem featuring Robin boundary conditions. The “consistency” of these approximations with the original notion of total perimeter is appraised from various points of view. At first, we prove the pointwise convergence of our approximate functionals, then the convergence of their derivatives, as the level of smoothing tends to 0, when the considered density function u is the characteristic function of a “regular enough” shape Ω ⊂ D. Then, we focus on the Γ-convergence of the second type of approximate total perimeter functional, that based on elliptic regularization. Several numerical examples are eventually presented in two and three space dimensions to validate our theoretical findings and demonstrate the efficiency of the proposed functionals in the context of structural optimization.

DOI : 10.1051/cocv/2022005
Classification : 49Q10, 49Q12, 35J05, 35J25, 41A60, 65K05
Keywords: Shape and topology optimization, perimeter function, calculus of variations, partial differential equations, asymptotic analysis, scientific computing
@article{COCV_2022__28_1_A18_0,
     author = {Amstutz, Samuel and Dapogny, Charles and Ferrer, Alex},
     title = {A consistent approximation of the total perimeter functional for topology optimization algorithms},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {28},
     doi = {10.1051/cocv/2022005},
     mrnumber = {4385100},
     zbl = {1485.49050},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/cocv/2022005/}
}
TY  - JOUR
AU  - Amstutz, Samuel
AU  - Dapogny, Charles
AU  - Ferrer, Alex
TI  - A consistent approximation of the total perimeter functional for topology optimization algorithms
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2022
VL  - 28
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/cocv/2022005/
DO  - 10.1051/cocv/2022005
LA  - en
ID  - COCV_2022__28_1_A18_0
ER  - 
%0 Journal Article
%A Amstutz, Samuel
%A Dapogny, Charles
%A Ferrer, Alex
%T A consistent approximation of the total perimeter functional for topology optimization algorithms
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2022
%V 28
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2022005/
%R 10.1051/cocv/2022005
%G en
%F COCV_2022__28_1_A18_0
Amstutz, Samuel; Dapogny, Charles; Ferrer, Alex. A consistent approximation of the total perimeter functional for topology optimization algorithms. ESAIM: Control, Optimisation and Calculus of Variations, Tome 28 (2022), article no. 18. doi: 10.1051/cocv/2022005

[1] M. Abramowitz and I. A. Stegun, Vol. 55 of Handbook of mathematical functions: with formulas, graphs, and mathematical tables. Courier Corporation (1965). | MR | Zbl

[2] G. Alberti, Variational models for phase transitions, an approach via Γ-convergence, in Calculus of variations and partial differential equations. Springer (2000) 95–114.

[3] G. Alberti and G. Bellettini, A non-local anisotropic model for phase transitions: asymptotic behaviour of rescaled energies. Eur. J. Appl. Math. 9 (1998) 261–284. | MR | Zbl | DOI

[4] G. Allaire, Vol. 146 of Shape optimization by the homogenization method. Springer Science & Business Media (2002). | Zbl | DOI

[5] G. Allaire, C. Dapogny, G. Delgado and G. Michailidis, Multi-phase structural optimization via a level set method. ESAIM: COCV 20 (2014) 576–611. | MR | Zbl | Numdam

[6] G. Allaire, C. Dapogny and F. Jouve, Shape and topology optimization, in Geometric Partial Differential Equations - Part II. vol. 22 of Handbook of Numerical Analysis. Elsevier (2021) 1–132. | MR | Zbl

[7] G. Allaire, F. Jouve and A.-M. Toader, Structural optimization using sensitivity analysis and a level-set method. J. Comput. Phys. 194 (2004) 363–393. | MR | Zbl | DOI

[8] G. Allaire and O. Pantz, Structural optimization with FreeFem++. Struct. Multidiscip. Optim. 32 (2006) 173–181. | MR | Zbl | DOI

[9] G. Allaire and M. Schoenauer, Vol. 58 of Conception optimale de structures. Springer (2007). | MR | Zbl

[10] L. Ambrosio and G. Buttazzo, An optimal design problem with perimeter penalization. Calc. Variat. Partial Differ. Equ. 1 (1993) 55–69. | MR | Zbl | DOI

[11] L. Ambrosio, P. Colli Franzone and G. Savaré, On the asymptotic behaviour of anisotropic energies arising in the cardiac bidomain model. Interf. Free Bound. 2 (2000) 213–266. | MR | Zbl | DOI

[12] L. Ambrosio, N. Fusco and D. Pallara, Vol. 254 of Functions of bounded variation and free discontinuity problems. Clarendon Press (2000). | Zbl | DOI

[13] L. Ambrosio and H. M. Soner, Level set approach to mean curvature flow in arbitrary codimension. J. Differ. Geometry (1994) 693–737. | Zbl

[14] L. Ambrosio and V. Tortorelli, On the approximation of free discontinuity problems. Boll. Un. Mat. Ita.l B (1992) 105–123. | Zbl

[15] L. Ambrosio and V. M. Tortorelli, Approximation of functional depending on jumps by elliptic functional via t-convergence. Commun. Pure Appl. Math. 43 (1990) 999–1036. | Zbl | DOI

[16] S. Amstutz, Connections between topological sensitivity analysis and material interpolation schemes in topology optimization. Struct. Multidiscip. Optim. 43 (2011) 755–765. | Zbl | DOI

[17] S. Amstutz, Regularized perimeter for topology optimization. SIAM J. Cont. Optim. 51 (2013) 2176–2199. | MR | Zbl | DOI

[18] S. Amstutz and H. Andrä, A new algorithm for topology optimization using a level-set method. J. Comput. Phys. 216 (2006) 573–588. | MR | Zbl | DOI

[19] S. Amstutz, C. Dapogny and À. Ferrer, A consistent relaxation of optimal design problems for coupling shape and topological derivatives. Numer. Math. (2016) 1–60. | MR | Zbl

[20] S. Amstutz, A. A. Novotny and N. Van Goethem, Minimal partitions and image classification using a gradient-free perimeter approximation. Inverse Prob. Imag. 8 (2014) 361–387. | Zbl

[21] S. Amstutz and N. Van Goethem Topology optimization methods with gradient-free perimeter approximation. Interf. Free Bound. 14 (2012) 401–430. | Zbl | DOI

[22] H. Attouch, G. Buttazzo and G. Michaille, Vol. 17 of Variational analysis in Sobolev and BV spaces: applications to PDEs and optimization. Siam (2014). | MR | Zbl

[23] G. Aubert, M. Barlaud, O. Faugeras and S. Jehan-Besson, Image segmentation using active contours: Calculus of variations or shape gradients? SIAM J. Appl. Math. 63 (2003) 2128–2154. | MR | Zbl | DOI

[24] L. Bar, T. F. Chan, G. Chung, M. Jung, N. Kiryati, N. Sochen and L. A. Vese, Mumford and Shah model and its applications to image segmentation and image restoration. Handbook of mathematical methods in imaging (2014) 1–52. | Zbl

[25] M. P. Bendsoe and O. Sigmund, Topology optimization: theory, methods, and applications. Springer Science & Business Media (2013).

[26] T. Borrvall and J. Petersson, Topology optimization of fluids in Stokes flow. Int. J. Numer. Methods Fluids 41 (2003) 77–107. | MR | Zbl | DOI

[27] B. Bourdin, Filters in topology optimization. Int. J. Numer. Methods Eng. 50 (2001) 2143–2158. | MR | Zbl | DOI

[28] B. Bourdin and A. Chambolle, Design-dependent loads in topology optimization. ESAIM: COCV 9 (2003) 19–48. | Zbl | MR | Numdam

[29] A. Braides, vol. 22 of Gamma-convergence for Beginners. Clarendon Press (2002). | MR | Zbl | DOI

[30] A. Braides, A handbook of Γ -convergence, in Handbook of Differential Equations: stationary partial differential equations. Elsevier (2006), pp. 101–213, vol. 3. | Zbl

[31] A. Bressan and Q. Sun, On the optimal shape of tree roots and branches. Math. Models Methods Appl. Sci. 28 (2018) 2763–2801. | MR | Zbl | DOI

[32] E. Bretin, Mouvements par courbure moyenne et méthode de champs de phase. Ph.D. thesis, Institut National Polytechnique de Grenoble-INPG (2009).

[33] H. Brezis, Functional analysis, Sobolev spaces and partial differential equations. Springer Science & Business Media (2010).

[34] T. E. Bruns and D. A. Tortorelli, Topology optimization of non-linear elastic structures and compliant mechanisms. Comput. Methods Appl. Mech. Eng. 190 (2001) 3443–3459. | Zbl | DOI

[35] E. Cancès, R. Keriven, F. Lodier and A. Savin, How electrons guard the space: shape optimization with probability distribution criteria. Theor. Chem. Accounts 111 (2004) 373–380. | DOI

[36] I. Chavel, vol. 98 of Riemannian geometry: a modern introduction. Cambridge University Press (2006). | MR | Zbl | DOI

[37] G. De Philippis and B. Velichkov, Existence and regularity of minimizers for some spectral functionals with perimeter constraint. Appl. Math. Optim 69 (2014) 199–231. | MR | Zbl | DOI

[38] M. P. Do Carmo, Differential geometry of curves and surfaces: revised and updated second edition, Courier Dover Publications (2016). | Zbl

[39] S. Esedoglu and F. Otto, Threshold dynamics for networks with arbitrary surface tensions. Commun. Pure Appl. Math. 68 (2015) 808–864. | Zbl | DOI

[40] L. C. Evans and R. F. Gariepy, Measure theory and fine properties of functions. CRC Press (2015). | Zbl | DOI

[41] F. Feppon, G. Allaire, F. Bordeu, J. Cortial and C. Dapogny, Shape optimization of a coupled thermal fluid-structure problem in a level set mesh evolutionframework (2018) submitted for publication. | Zbl

[42] F. Feppon, G. Allaire and C. Dapogny, A variational formulation for computing shape derivatives of geometric constraints along rays. ESAIM: Math. Model. Numer. Anal. 54 (2020) 181–228. | Zbl | DOI

[43] A. Ferrer, SIMP-ALL: A generalized SIMP method based on the topological derivative concept. Int. J. Numer. Methods Eng. 120 (2019) 361–381. | MR | Zbl | DOI

[44] S. Garreau, P. Guillaume and M. Masmoudi, The topological asymptotic for PDE systems: the elasticity case. SIAM J. Control Optim. 39 (2001) 1756–1778. | Zbl | DOI

[45] E. Giusti and G. H. Williams, vol. 80 of Minimal surfaces and functions of bounded variation. Springer (1984). | Zbl | DOI

[46] A. Henrot and M. Pierre, Shape Variation and Optimization, Vol. 28, EMS Tracts in Mathematics (2018). | Zbl | DOI

[47] R. V. Kohn and G. W. Milton, On bounding the effective conductivity of anisotropic composites, in Homogenization and effective moduli of materials and media. Springer (1986) 97–125. | MR | Zbl | DOI

[48] P. Kythe, Fundamental solutions for differential operators and applications. Springer Science & Business Media (2012). | MR | Zbl

[49] J.-L. Lions, vol. 323 of Perturbations singulières dans les problèmes aux limites et en contrôle optimal. Springer (2006).

[50] J.-L. Lions and G. Duvaut, Inequalities in mechanics and physics. Springer (1976). | Zbl

[51] A. Maury, G. Allaire and F. Jouve, Shape optimisation with the level set method for contact problems in linearised elasticity. SMAI J. Comput. Math. 3 (2017) 249–292. | Zbl | DOI

[52] B. Merriman, J. K. Bence and S. Osher, Diffusion generated motion by mean curvature. Department of Mathematics, University of California, Los Angeles (1992).

[53] M. Miranda Jr, D. Pallara, F. Paronetto and M. Preunkert, Short-time heat flow and functions of bounded variation in 𝐑 N . Ann. Facult. Sci. Toulouse: Math. 16 (2007) 125–145. | MR | Zbl | Numdam | DOI

[54] L. Modica, The gradient theory of phase transitions and the minimal interface criterion. Arch. Ratl. Mech. Anal. 98 (1987) 123–142. | Zbl | DOI

[55] L. Modica and S. Mortola, Un esempio di Γ-convergenza. Unione Mat. Ital. Sez. B 14 (1977) 285–299. | Zbl

[56] B. Mohammadi and O. Pironneau, Applied shape optimization for fluids. Oxford University Press (2010). | MR

[57] F. Murat and J. Simon, Sur le contrôle par un domaine géométrique. Pré-publication du Laboratoire d’Analyse Numérique (76015) (1976).

[58] A. A. Novotny and J. Sokołowski, Topological derivatives in shape optimization. Springer Science & Business Media (2012). | MR

[59] O. Pironneau, Optimal shape design for elliptic systems. Springer (1982).

[60] J. A. Sethian, Vol. 3 of Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science. Cambridge University Press (1999). | Zbl

[61] J. A. Sethian and A. Wiegmann, Structural boundary design via level set and immersed interface methods. J. Comput. Phys. 163 (2000) 489–528. | Zbl | DOI

[62] K. Shoemake, Animating rotation with quaternion curves, in Proceedings of the 12th annual conference on Computer graphics and interactive techniques (1985) 245–254.

[63] O. Sigmund and K. Maute, Topology optimization approaches. Struct. Multidiscip. Optim. 48 (2013) 1031–1055. | DOI

[64] O. Sigmund and J. Petersson, Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Structural optimization 16 (1998) 68–75. | DOI

[65] M. Solci and E. Vitali, Variational models for phase separation. Interfaces Free Bound. 5 (2003) 27–46. | Zbl | DOI

[66] M. Y. Wang, X. Wang and D. Guo, A level set method for structural topology optimization. Computer Methods Appl. Mech. Eng. 192 (2003) 227–246. | Zbl | DOI

[67] J. Wettlaufer, M. Jackson and M. Elbaum, A geometric model for anisotropic crystal growth. J. Phys. A: Math. General 27 (1994) 5957. | MR | Zbl | DOI

Cité par Sources :