A rearrangement minimization problem corresponding to p -Laplacian equation
ESAIM: Control, Optimisation and Calculus of Variations, Tome 28 (2022), article no. 11

In this paper a rearrangement minimization problem corresponding to solutions of the p-Laplacian equation is considered. The solution of the minimization problem determines the optimal way of exerting external forces on a membrane in order to have a minimum displacement. Geometrical and topological properties of the optimizer is derived and the analytical solution of the problem is obtained for circular and annular membranes. Then, we find nearly optimal solutions which are shown to be good approximations to the minimizer for specific ranges of the parameter values in the optimization problem. A robust and efficient numerical algorithm is developed based upon rearrangement techniques to derive the solution of the minimization problem for domains with different geometries in ℝ2 and ℝ3.

DOI : 10.1051/cocv/2022004
Classification : 35Q93, 49J20, 49M99, 35J20, 74E30
Keywords: $$-Laplacian, rearrangement minimization, analytical solution, rearrangement algorithms, membranes
@article{COCV_2022__28_1_A11_0,
     author = {Kao, Chiu-Yen and Mohammadi, Seyyed Abbas},
     title = {A rearrangement minimization problem corresponding to $p${-Laplacian} equation},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {28},
     doi = {10.1051/cocv/2022004},
     mrnumber = {4379605},
     zbl = {1492.35392},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/cocv/2022004/}
}
TY  - JOUR
AU  - Kao, Chiu-Yen
AU  - Mohammadi, Seyyed Abbas
TI  - A rearrangement minimization problem corresponding to $p$-Laplacian equation
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2022
VL  - 28
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/cocv/2022004/
DO  - 10.1051/cocv/2022004
LA  - en
ID  - COCV_2022__28_1_A11_0
ER  - 
%0 Journal Article
%A Kao, Chiu-Yen
%A Mohammadi, Seyyed Abbas
%T A rearrangement minimization problem corresponding to $p$-Laplacian equation
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2022
%V 28
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2022004/
%R 10.1051/cocv/2022004
%G en
%F COCV_2022__28_1_A11_0
Kao, Chiu-Yen; Mohammadi, Seyyed Abbas. A rearrangement minimization problem corresponding to $p$-Laplacian equation. ESAIM: Control, Optimisation and Calculus of Variations, Tome 28 (2022), article no. 11. doi: 10.1051/cocv/2022004

[1] P. R. Antunes, S. A. Mohammadi and H. Voss, A nonlinear eigenvalue optimization problem: optimal potential functions. Nonlinear Anal.: Real World Appl. 40 (2018) 307–327. | MR | Zbl | DOI

[2] C. Atkinson and C. Champion, On some boundary value problems for the equation · ( f | w | ) w ) = 0 . Proc. Royal Soc. Lond. Math. Phys. Sci. 448 (1995) 269–279. | MR | Zbl

[3] K. Atkinson and W. Han, Vol. 39 of Theoretical Numerical Analysis: A Functional Analysis Framework. Springer Science & Business Media (2009). | MR | Zbl

[4] F. Bahrami, B. Emamizadeh and A. Mohammadi, Existence of an extremal ground state energy of a nanostructured quantum dot. Nonlinear Anal.: Theory Methods Appl. 74 (2011) 6287–6294. | MR | Zbl | DOI

[5] F. Bahrami and H. Fazli, Optimization problems involving Poisson’s equation in 3 . Electr. J. Differ. Equ. 2011 (2011) 1–9. | MR | Zbl

[6] T. Bhattacharya, E. Dibenedetto and J. Manfredi, Limits as p of δ p u p = f and related extremal problems. Rend. Sem. Mat. Univ. Politec. Torino 47 (1989) 15–68. | MR

[7] H. Brezis, Functional analysis, Sobolev spaces and partial differential equations. Springer Science & Business Media (2010). | MR

[8] F. Brock, Rearrangements and applications to symmetry problems in PDE. Vol. 4 of Handbook of differential equations: stationary partial differential equations. Elsevier (2007) 1–60. | MR | Zbl

[9] G. Burton, Rearrangements of functions, maximization of convex functionals, and vortex rings. Math. Ann. 276 (1987) 225–253. | MR | Zbl | DOI

[10] G. Burton, Variational problems on classes of rearrangements and multiple configurations for steady vortices. Ann. Inst. Henri Poincaré (C) Non Linear Analysis 6 (1989) 295–319. | MR | Zbl | Numdam | DOI

[11] S. Chanillo, D. Grieser, M. Imai, K. Kurata and I. Ohnishi, Symmetry breaking and other phenomena in the optimization of eigenvalues for composite membranes. Commun. Math. Phys. 214 (2000) 315–337. | MR | Zbl | DOI

[12] W. Chen, C.-S. Chou and C.-Y. Kao, Minimizing eigenvalues for inhomogeneous rods and plates. J. Sci. Comput. 69 (2016) 983–1013. | MR | Zbl | DOI

[13] M. Cicalese and C. Trombetti, Asymptotic behaviour of solutions to p -Laplacian equation. Asymptotic Anal. 35 (2003) 27–40. | MR | Zbl | DOI

[14] S. Cox and R. Lipton, Extremal eigenvalue problems for two-phase conductors. Arch. Ratl. Mech. Anal. 136 (1996) 101–118. | MR | Zbl | DOI

[15] M. G. Crandall and P.-L. Lions, Viscosity solutions of Hamilton-Jacobi equations. Trans. Am. Math. Soc. 277 (1983) 1–42. | MR | Zbl | DOI

[16] F. Cuccu, B. Emamizadeh and G. Porru, Nonlinear elastic membranes involving the p -Laplacian operator. Electr. J. Differ. Equ. 2006 (2006) 49. | MR | Zbl

[17] F. Cuccu, K. Jha, G. Porru and N. Kathmandu, Optimization problems for some functionals related to solutions of PDE’S. Int. J. Pure Appl. Math. 2 (2002) 399–410. | MR | Zbl

[18] B. Emamizadeh and Y. Liu, Constrained and unconstrained rearrangement minimization problems related to the p -Laplace operator. Israel J. Math. 206 (2015) 281–298. | MR | Zbl | DOI

[19] B. Emamizadeh and M. Marras, Rearrangement optimization problems with free boundary. Numer. Funct. Anal. Optim. 35 (2014) 404–422. | MR | Zbl | DOI

[20] D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order. Springer (2015). | MR

[21] M. Guedda and L. Véron, Quasilinear elliptic equations involving critical Sobolev exponents. Nonlinear Anal.: Theory, Methods & Appl. 13 (1989) 879–902. | MR | Zbl | DOI

[22] W. Han and K. E. Atkinson, Theoretical Numerical Analysis: A Functional Analysis Framework. Springer (2009). | MR | Zbl

[23] A. Henrot, Extremum problems for eigenvalues of elliptic operators. Springer Science & Business Media (2006). | MR | Zbl | DOI

[24] D. Kang, P. Choi and C.-Y. Kao, Minimization of the first nonzero eigenvalue problem for two-phase conductors with Neumann boundary conditions. SIAM J. Appl. Math. 80 (2020) 1607–1628. | MR | Zbl | DOI

[25] D. Kang and C.-Y. Kao, Minimization of inhomogeneous biharmonic eigenvalue problems. Appl. Math. Model. 51 (2017) 587–604. | MR | Zbl | DOI

[26] C.-Y. Kao, Y. Lou and E. Yanagida, Principal eigenvalue for an elliptic problem with indefinite weight on cylindrical domains. Math. Biosci. Eng. 5 (2008) 315. | MR | Zbl | DOI

[27] C.-Y. Kao and S. A. Mohammadi, Extremal rearrangement problems involving Poisson’s equation with Robin boundary conditions. J. Sci. Comput. 86 (2021) 1–28. | MR | Zbl

[28] C.-Y. Kao, S. A. Mohammadi and B. Osting, Linear convergence of a rearrangement method for the one-dimensional Poisson equation. J. Sci. Comput. 86 (2021) 1–18. | MR | Zbl

[29] C.-Y. Kao, S. Osher and Y.-H. Tsai, Fast sweeping methods for static Hamilton–Jacobi equations. SIAM J Numer. Anal. 42 (2005) 2612–2632. | MR | Zbl | DOI

[30] C.-Y. Kao and B. Osting, Extremal spectral gaps for periodic Schrödinger operators. ESAIM: COCV 25 (2019) 40. | MR | Zbl | Numdam

[31] C.-Y. Kao and S. Su, Efficient rearrangement algorithms for shape optimization on elliptic eigenvalue problems. J. Sci. Comput. 54 (2013) 492–512. | MR | Zbl | DOI

[32] B. Kawohl, On a family of torsional creep problems. J. Reine Angew. Math. 410 (1990) 1–22. | MR | Zbl

[33] B. Kawohl and F. Schuricht, Dirichlet problems for the 1-Laplace operator, including the eigenvalue problem. Commun. Contemp. Math. 9 (2007) 515–543. | MR | Zbl | DOI

[34] G. Keady and A. Mcnabb, The elastic torsion problem: solutions in convex domains. NZ J. Math. 22 (1993) 43–64. | MR | Zbl

[35] G. M. Lieberman, Boundary regularity for solutions of degenerate elliptic equations. Nonlinear Anal.: Theory, Methods Appl. 12 (1988) 1203–1219. | MR | Zbl | DOI

[36] Y. Liu and B. Emamizadeh, Rearrangement minimization problems with indefinite external forces. Nonlinear Anal.: Theory, Methods Appl. 145 (2016) 162–175. | MR | Zbl | DOI

[37] Y. Liu and B. Emamizadeh, Converse symmetry and intermediate energy values in rearrangement optimization problems. SIAM J. Control Optim. 55 (2017) 2088–2107. | MR | Zbl | DOI

[38] M. Marras, Optimization in problems involving the p -Laplacian. Electr. J. Differ. Equ. 2010 (2010) 2. | MR | Zbl

[39] A. Mercaldo, S. S. De León and C. Trombetti, On the behaviour of the solutions to p -Laplacian equations as p goes to 1 . Publicacions Mat. (2008) 377–411. | MR | Zbl | DOI

[40] S. A. Mohammadi, F. Bozorgnia and H. Voss, Optimal shape design for the p -Laplacian eigenvalue problem. J. Sci. Comput., 78 (2019) 1231–1249. | MR | Zbl | DOI

[41] S. A. Mohammadi, Extremal energies of Laplacian operator: Different configurations for steady vortices, J. Math. Anal. Appl. 448 (2017) 140–155. | MR | Zbl | DOI

[42] A. Mohammadi and F. Bahrami, A nonlinear eigenvalue problem arising in a nanostructured quantum dot. Commun. Nonlinear Sci. Numer. Simul. 19 (2014) 3053–3062. | MR | Zbl | DOI

[43] S. A. Mohammadi and H. Voss, A minimization problem for an elliptic eigenvalue problem with nonlinear dependence on the eigenparameter. Nonlinear Anal.: Real World Appl. 31 (2016) 119–131. | MR | Zbl | DOI

[44] A. Mohammadi and M. Yousefnezhad, Optimal ground state energy of two-phase conductors. Electr. J. Differ. Equ. 2014 (2014) 1–8. | MR | Zbl

[45] P.-O. Persson and G. Strang, A simple mesh generator in MATLAB. SIAM Rev. 46 (2004) 329–345. | MR | Zbl | DOI

[46] G. Pólya and G. Szegö, Isoperimetric Inequalities in Mathematical Physics. (AM-27), Vol. 27. Princeton University Press (1951). | MR | Zbl

[47] S. Salsa, Vol. 99 of Partial differential equations in action: from modelling to theory. Springer (2016). | MR | Zbl

[48] J. A. Sethian, Fast marching methods. SIAM Rev. 41 (1999) 199–235. | MR | Zbl | DOI

[49] B. Straughan, A note on convection with nonlinear heat flux. Ricerche di matematica 56 (2007) 229–239. | MR | Zbl | DOI

[50] P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations. J. Differ. Equ. 51 (1984) 126–150. | MR | Zbl | DOI

[51] N. S. Trudinger, On Harnack type inequalities and their application to quasilinear elliptic equations. Commun. Pure Appl. Math. 20 (1967) 721–747. | MR | Zbl | DOI

[52] H. Zhao, A fast sweeping method for Eikonal equations. Math. Comput. 74 (2005) 603–627. | MR | Zbl | DOI

Cité par Sources :