Formulation and properties of a divergence used to compare probability measures without absolute continuity
ESAIM: Control, Optimisation and Calculus of Variations, Tome 28 (2022), article no. 10

This paper develops a new divergence that generalizes relative entropy and can be used to compare probability measures without a requirement of absolute continuity. We establish properties of the divergence, and in particular derive and exploit a representation as an infimum convolution of optimal transport cost and relative entropy. Also included are examples of computation and approximation of the divergence, and the demonstration of properties that are useful when one quantifies model uncertainty.

DOI : 10.1051/cocv/2022002
Classification : 60A10, 62B10, 93E15, 94A17
Keywords: Relative entropy, optimal transport theory, convex duality, calculus of variation, information-theoretic divergence, risk-sensitive control
@article{COCV_2022__28_1_A10_0,
     author = {Dupuis, Paul and Mao, Yixiang},
     title = {Formulation and properties of a divergence used to compare probability measures without absolute continuity},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {28},
     doi = {10.1051/cocv/2022002},
     mrnumber = {4371079},
     zbl = {1478.60008},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/cocv/2022002/}
}
TY  - JOUR
AU  - Dupuis, Paul
AU  - Mao, Yixiang
TI  - Formulation and properties of a divergence used to compare probability measures without absolute continuity
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2022
VL  - 28
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/cocv/2022002/
DO  - 10.1051/cocv/2022002
LA  - en
ID  - COCV_2022__28_1_A10_0
ER  - 
%0 Journal Article
%A Dupuis, Paul
%A Mao, Yixiang
%T Formulation and properties of a divergence used to compare probability measures without absolute continuity
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2022
%V 28
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2022002/
%R 10.1051/cocv/2022002
%G en
%F COCV_2022__28_1_A10_0
Dupuis, Paul; Mao, Yixiang. Formulation and properties of a divergence used to compare probability measures without absolute continuity. ESAIM: Control, Optimisation and Calculus of Variations, Tome 28 (2022), article no. 10. doi: 10.1051/cocv/2022002

[1] S.-I. Amari, R. Karakida and M. Oizumi, Information geometry connecting Wasserstein distance and Kullback–Leibler divergence via the entropy-relaxed transportation problem. Inf. Geometry 1 (2018) 13–37. | MR | Zbl | DOI

[2] L. Ambrosio and N. Gigli, A User’s Guide to Optimal Transport. Springer, Berlin, Heidelberg (2013). | MR

[3] G. Bayraksan and D. K. Love, Chapter 1 of Data-Driven Stochastic Programming Using Phi-Divergences (2015) 1–19.

[4] J. Blanchet, Y. Kang and K. Murthy, Robust Wasserstein profile inference and applications to machine learning. J. Appl. Probab. 56 (2016) 10. | MR | Zbl

[5] J. Blanchet and K. Murthy, Quantifying distributional model risk via optimal transport. SSRN Electr. J. (2016). | Zbl

[6] R. I. Boţ, S.-M. Grad and G. Wanka, Duality in Vector Optimization. Springer-Verlag, Berlin Heidelberg (2009). | MR | Zbl | DOI

[7] T. Breuer and I. Csiszár, Measuring distribution model risk. Math. Finance 26 (2013) 395–411. | MR | Zbl | DOI

[8] K. Chowdhary and P. Dupuis, Distinguishing and integrating aleatoric and epistemic variationi in uncertainty quantification. ESAIM: M2AN 47 (2013) 635–662. | MR | Zbl | Numdam | DOI

[9] P. Dupuis and R. S. Ellis, A Weak Convergence Approach to the Theory of Large Deviations. John Wiley & Sons, New York (1997). | MR | Zbl | DOI

[10] P. Dupuis, M. R. James and I. R. Petersen, Robust properties of risk–sensitive control. Math. Control Signals Syst. 13 (2000) 318–332. | MR | Zbl | DOI

[11] P. Dupuis, M. A. Katsoulakis, Y. Pantazis and P. Plechac, Path-space information bounds for uncertainty quantification and sensitivity analysis of stochastic dynamics. SIAM/ASA J. Uncert. Quantific. 4 (2016) 80–111. | MR | Zbl | DOI

[12] P. Glasserman and X. Xu, Robust risk measurement and model risk. Quantit. Finance 14 (2014) 29–58. | MR | Zbl | DOI

[13] L. P. Hansen and T. J. Sargent, Robust control and model uncertainty. Am. Econ. Rev. 91 (2001) 60–66. | DOI

[14] S. Kolouri, S. Park, M. Thorpe, D. Slepcev and G. Rohde, Optimal mass transport: Signal processing and machine-learning applications. IEEE Signal Process. Mag. 34 (2017) 43–59. | DOI

[15] H. Lam, Robust sensitivity analysis for stochastic systems. Math. Oper. Res. 41 (2016) 1248–1275. | MR | Zbl | DOI

[16] A. E. B. Lim, J. G. Shanthikumar and T. Watewai, Robust intensity control with multiple levels of model uncertainty and the dual risk-sensitive problem. In 49th IEEE Conference on Decision and Control (CDC) (2010) 4305–4310.

[17] X. Nguyen, H. J. Wainwright and M. I. Jordan, Estimating divergence functionals and the likelihood ratio by convex risk minimization. IEEE Trans. Inform. Theory 56 (2010) 5847–5861. | MR | Zbl | DOI

[18] A. Nilim and L. El Ghaoui, Robust control of Markov decision processes with uncertain transition matrices. Oper. Res. 53 (2005) 780–798. | MR | Zbl | DOI

[19] I. R. Petersen, M. R. James and P. Dupuis, Minimax optimal control of stochastic uncertain systems with relative entropy constraints. IEEE Trans. Automatic Control 45 (2000) 398–412. | MR | Zbl | DOI

[20] S. T. Rachev and L. Rüschendorf, Mass Transportation Problems. Probability and Its Applications. Springer-Verlag New York (1998). | MR

[21] R. T. Rockafellar, Convex Analysis. Princeton University Press, Princeton (1970). | MR | Zbl | DOI

[22] W. Rudin, Functional Analysis. McGraw-Hill, New York (1991). | MR | Zbl

[23] F. Santambrogio, Optimal Transport for Applied Mathematicians. Progress in Nonlinear Differential Equations and Their Applications. Birkhauser Basel (2015). | MR | Zbl | DOI

[24] B. Schmitzer and B. Wirth, A framework for Wasserstein-1-type metrics. J. Convex Anal. 26 (2019) 353–396. | MR | Zbl

[25] C. Villani, Optimal Transport: Old and New. Springer-Verlag, Berlin Heidelberg (2009). | MR | Zbl | DOI

Cité par Sources :

Research supported in part by the National Science Foundation (NSF-DMS-1904992).

Research supported in part by the Air Force Office of Scientific Research (FA-9550-18-1-0214).