We prove that among all doubly connected domains of ℝ$$ of the form , where B1 and B2 are open balls of fixed radii such that , the first nonzero Steklov eigenvalue achieves its maximal value uniquely when the balls are concentric. Furthermore, we show that the ideas of our proof also apply to a mixed boundary conditions eigenvalue problem found in literature.
Keywords: Steklov eigenvalues, perforated domains
@article{COCV_2022__28_1_A6_0,
author = {Ftouhi, Ilias},
title = {Where to place a spherical obstacle so as to maximize the first nonzero {Steklov} eigenvalue},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
year = {2022},
publisher = {EDP-Sciences},
volume = {28},
doi = {10.1051/cocv/2021109},
mrnumber = {4364336},
zbl = {1523.35230},
language = {en},
url = {https://www.numdam.org/articles/10.1051/cocv/2021109/}
}
TY - JOUR AU - Ftouhi, Ilias TI - Where to place a spherical obstacle so as to maximize the first nonzero Steklov eigenvalue JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2022 VL - 28 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/cocv/2021109/ DO - 10.1051/cocv/2021109 LA - en ID - COCV_2022__28_1_A6_0 ER -
%0 Journal Article %A Ftouhi, Ilias %T Where to place a spherical obstacle so as to maximize the first nonzero Steklov eigenvalue %J ESAIM: Control, Optimisation and Calculus of Variations %D 2022 %V 28 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/cocv/2021109/ %R 10.1051/cocv/2021109 %G en %F COCV_2022__28_1_A6_0
Ftouhi, Ilias. Where to place a spherical obstacle so as to maximize the first nonzero Steklov eigenvalue. ESAIM: Control, Optimisation and Calculus of Variations, Tome 28 (2022), article no. 6. doi: 10.1051/cocv/2021109
[1] and , Internal stabilizability for a reaction-diffusion problem modeling a predator-prey system. Nonlinear Anal. 61 (2005) 491–501. | MR | Zbl | DOI
[2] and , On the extrema of Dirichlet’s first eigenvalue of a family of punctured regular polygons in two dimensional space forms. Proc. Indian Acad. Sci. Math. Sci. 122 (2012) 257–281. | MR | Zbl | DOI
[3] and , On two functionals connected to the Laplacian in a class of doubly connected domains in space-forms. Proc. Indian Acad. Sci. Math. Sci. 115 (2005) 93–102. | MR | Zbl | DOI
[4] and , On reverse Faber-Krahn inequalities. J. Math. Anal. Appl. 485 (2020) 123766. | MR | Zbl | DOI
[5] , and , On the strict monotonicity of the first eigenvalue of the -Laplacian on annuli. Trans. Am. Math. Soc. 370 (2018) 7181–7199. | MR | Zbl | DOI
[6] and , Isoperimetric inequalities for eigenvalues of the Laplacian, in theory and mathematical physics: a Festschrift in honor of Barry Simon’s 60th birthday. Vol. 76 of Proc. Sympos. Pure Math. Amer. Math. Soc., Providence, RI (2007) 105–139. | MR | Zbl
[7] , and , Harmonic function theory. Vol. 137 of Graduate Texts in Mathematics. Springer-Verlag, New York (2001), second ed. | MR | Zbl
[8] , Isoperimetric inequalities and applications. Vol. 7 of Monographs and Studies in Mathematics. Pitman (Advanced Publishing Program), Boston, Mass.-London (1980). | MR | Zbl
[9] , Best constants in Sobolev trace inequalities. Nonlinear Anal. 54 (2003) 575–589. | MR | Zbl | DOI
[10] , An isoperimetric inequality for eigenvalues of the Stekloff problem. ZAMM Z. Angew. Math. Mech. 81 (2001) 69–71. | MR | Zbl | DOI
[11] , , and , Weinstock inequality in higher dimensions. J. Differ. Geom. 118 (2021) 1–21. | MR | Zbl | DOI
[12] and , Stability and instability issues of the Weinstock inequality. Trans. Am. Math. Soc. 374 (2021) 2201–2223. | MR | Zbl | DOI
[13] and , An eigenvalue optimization problem for the -Laplacian. Proc. Roy. Soc. Edinburgh Sect. A 145 (2015) 1145–1151. | MR | Zbl | DOI
[14] and , Two functionals connected to the Laplacian in a class of doubly connected domains on rank one symmetric spaces of non-compact type. Geom. Dedicata 167 (2013) 11–21. | MR | Zbl | DOI
[15] , and , A sharp upper bound for the torsional rigidity of rods by means of web functions. Arch. Ration. Mech. Anal. 164 (2002) 189–211. | MR | Zbl | DOI
[16] , Zu einem Stekloffschen Eigenwertproblem in Ringgebieten. Mitt. Math. Sem. Giessen (1996) 1–7. | MR | Zbl
[17] and , On the placement of an obstacle so as to optimize the Dirichlet heat trace. SIAM J. Math. Anal. 48 (2016) 884–894. | MR | Zbl | DOI
[18] and , Extremal first Dirichlet eigenvalue of doubly connected plane domains and dihedral symmetry. SIAM J. Math. Anal. 39 (2007/08) 1112–1119. | MR | Zbl | DOI
[19] and , Where to place a spherical obstacle so as to maximize the second Dirichlet eigenvalue. Commun. Pure Appl. Anal. 7 (2008) 1193–1201. | MR | Zbl | DOI
[20] , Sharp constant in a Sobolev trace inequality. Indiana Univ. Math. J. 37 (1988) 687–698. | MR | Zbl | DOI
[21] , Dass unter allen homogenen membranen von gleicher fläche und gleicher spannung die kreisförmige den tiefsten grundtongibt. Sitzungsberichte der mathematischphysikalischen Klasse der Bauerischen Akademie der Wissenschaften zu München Jahrgang (1923) 169–172. | JFM
[22] , and , The best Sobolev trace constant in domains with holes for critical or subcritical exponents. ANZIAM J. 49 (2007) 213–230. | MR | Zbl | DOI
[23] , and , Regularity of the free boundary in an optimization problem related to the best Sobolev trace constant. SIAM J. Control Optim. 44 (2005) 1614–1635. | MR | Zbl | DOI
[24] and , Shape optimization for the Steklov problem in higher dimensions. Adv. Math. 348 (2019) 146–162. | MR | Zbl | DOI
[25] , , and , A quantitative Weinstock inequality for convex sets. Calc. Var. Partial Differential Equ. 59 (2020) 2. | MR | Zbl | DOI
[26] , , and , An isoperimetric inequality for the first Steklov–Dirichlet Laplacian eigenvalue of convex sets with a spherical hole (2021). | MR | Zbl
[27] and , On maximizing the fundamental frequency of the complement of an obstacle. C. R. Math. Acad. Sci. Paris 356 (2018) 406–411. | MR | Zbl | DOI
[28] , and , Continuity of eigenvalues and shape optimisation for Laplace and Steklov problems. Geom. Funct. Anal. 31 (2021) 513–561. | MR | Zbl | DOI
[29] and , Spectral geometry of the Steklov problem (survey article). J. Spectr. Theory 7 (2017) 321–359. | MR | Zbl | DOI
[30] and , Geometrical structure of Laplacian eigenfunctions. SIAM Rev. 55 (2013) 601–667. | MR | Zbl | DOI
[31] , Summen reziproker Eigenwerte, PhD thesis, Mathematisch-Naturwissenschaftlich-Technischen Fakultät der Martin-Luther-Universität Hall, Wittenberg (2006). | Zbl
[32] , and , On the placement of an obstacle or a well so as to optimize the fundamental eigenvalue. SIAM J. Math. Anal. 33 (2001) 240–259. | MR | Zbl | DOI
[33] , Extremum problems for eigenvalues of elliptic operators. Frontiers in Mathematics, Birkhäuser Verlag, Basel (2006). | MR | Zbl | DOI
[34] and , Optimizing the first Dirichlet eigenvalue of the Laplacian with an obstacle. Ann. Sc. Norm. Super. Pisa Cl. Sci. 19 (2019) 1535–1559. | MR | Zbl
[35] , Contribution to the method of interior parallels applied to vibrating membranes, in Studies in mathematical analysis and related topics. Stanford Univ. Press, Stanford, Calif. (1962) 132–139. | MR | Zbl
[36] , and , On the first Steklov–Dirichlet eigenvalue for eccentric annuli. Annali di Matematica (2021). | DOI | MR | Zbl
[37] , On two functionals connected to the Laplacian in a class of doubly connected domains. Proc. Roy. Soc. Edinburgh Sect. A 133 (2003) 617–624. | MR | Zbl | DOI
[38] , On the nodal set of a second Dirichlet eigenfunction in a doubly connected domain. Annales de la Faculté des sciences de Toulouse : Mathématiques, Ser. 6 (2018) 863–873. | MR | Zbl | Numdam
[39] , Über eine von Rayleigh formulierte Minimaleigenschaft des Kreises. Math. Ann. 94 (1925) 97–100. | MR | JFM | DOI
[40] , Interesting series involving the central binomial coefficient. Am. Math. Monthly 92 (1985) 449–457. | MR | Zbl | DOI
[41] , and , A stability result for the Steklov Laplacian eigenvalue problem with a spherical obstacle. Commun. Pure Appl. Anal. 20 (2021) 145–158. | MR | Zbl | DOI
[42] , and , Sharp estimates for the first -Laplacian eigenvalue and for the -torsional rigidity on convex sets with holes. ESAIM: COCV 26 (2020) 111. | MR | Zbl | Numdam
[43] and , Some isoperimetric inequalities for membrane frequencies and torsional rigidity. J. Math. Anal. Appl. 2 (1961) 210–216. | MR | Zbl | DOI
[44] , A critical domain for the first normalized nontrivial Steklov eigenvalue among planar annular domains. Preprint (2019). | Zbl
[45] and , Inequalities for the minimal eigenvalue of the Laplacian in an annulus. Math. Inequal. Appl. 1 (1998) 559–563. | MR | Zbl
[46] , A shape optimization problem for the first mixed Steklov-Dirichlet eigenvalue. Ann. Global Anal. Geom. 59 (2021) 345–365. | MR | Zbl | DOI
[47] , Inequalities for certain eigenvalues of a membrane of given area. J. Ratl. Mech. Anal. 3 (1954) 343–356. | MR | Zbl
[48] and , On eigenvalue problems related to the Laplacian in a class of doubly connected domains. Monatsh. Math. 193 (2020) 879–899. | MR | Zbl | DOI
[49] , An isoperimetric inequality for the -dimensional free membrane problem. J. Ratl. Mech. Anal. 5 (1956) 633–636. | MR | Zbl
[50] , Inequalities for a classical eigenvalue problem. J. Ratl. Mech. Anal. 3 (1954) 745–753. | MR | Zbl
[51] , Analyse Complexe. https://www.math.u-bordeaux.fr/~ayger/coursAC-2011.pdf [accessed 19.11. 2021].
Cité par Sources :





