Where to place a spherical obstacle so as to maximize the first nonzero Steklov eigenvalue
ESAIM: Control, Optimisation and Calculus of Variations, Tome 28 (2022), article no. 6

We prove that among all doubly connected domains of ℝ$$ of the form B 1 B 2 ¯, where B1 and B2 are open balls of fixed radii such that B 2 ¯B 1 , the first nonzero Steklov eigenvalue achieves its maximal value uniquely when the balls are concentric. Furthermore, we show that the ideas of our proof also apply to a mixed boundary conditions eigenvalue problem found in literature.

DOI : 10.1051/cocv/2021109
Classification : 49R50, 49Q10, 35P05
Keywords: Steklov eigenvalues, perforated domains
@article{COCV_2022__28_1_A6_0,
     author = {Ftouhi, Ilias},
     title = {Where to place a spherical obstacle so as to maximize the first nonzero {Steklov} eigenvalue},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {28},
     doi = {10.1051/cocv/2021109},
     mrnumber = {4364336},
     zbl = {1523.35230},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/cocv/2021109/}
}
TY  - JOUR
AU  - Ftouhi, Ilias
TI  - Where to place a spherical obstacle so as to maximize the first nonzero Steklov eigenvalue
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2022
VL  - 28
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/cocv/2021109/
DO  - 10.1051/cocv/2021109
LA  - en
ID  - COCV_2022__28_1_A6_0
ER  - 
%0 Journal Article
%A Ftouhi, Ilias
%T Where to place a spherical obstacle so as to maximize the first nonzero Steklov eigenvalue
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2022
%V 28
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2021109/
%R 10.1051/cocv/2021109
%G en
%F COCV_2022__28_1_A6_0
Ftouhi, Ilias. Where to place a spherical obstacle so as to maximize the first nonzero Steklov eigenvalue. ESAIM: Control, Optimisation and Calculus of Variations, Tome 28 (2022), article no. 6. doi: 10.1051/cocv/2021109

[1] B. Ainseba and S. Aniţa, Internal stabilizability for a reaction-diffusion problem modeling a predator-prey system. Nonlinear Anal. 61 (2005) 491–501. | MR | Zbl | DOI

[2] A. R. Aithal and R. Raut, On the extrema of Dirichlet’s first eigenvalue of a family of punctured regular polygons in two dimensional space forms. Proc. Indian Acad. Sci. Math. Sci. 122 (2012) 257–281. | MR | Zbl | DOI

[3] M. H. C. Anisa and A. R. Aithal, On two functionals connected to the Laplacian in a class of doubly connected domains in space-forms. Proc. Indian Acad. Sci. Math. Sci. 115 (2005) 93–102. | MR | Zbl | DOI

[4] T. V. Anoop and K. Ashok Kumar, On reverse Faber-Krahn inequalities. J. Math. Anal. Appl. 485 (2020) 123766. | MR | Zbl | DOI

[5] T. V. Anoop, V. Bobkov and S. Sasi, On the strict monotonicity of the first eigenvalue of the p -Laplacian on annuli. Trans. Am. Math. Soc. 370 (2018) 7181–7199. | MR | Zbl | DOI

[6] M. S. Ashbaugh and R. D. Benguria, Isoperimetric inequalities for eigenvalues of the Laplacian, in theory and mathematical physics: a Festschrift in honor of Barry Simon’s 60th birthday. Vol. 76 of Proc. Sympos. Pure Math. Amer. Math. Soc., Providence, RI (2007) 105–139. | MR | Zbl

[7] S. Axler, P. Bourdon and W. Ramey, Harmonic function theory. Vol. 137 of Graduate Texts in Mathematics. Springer-Verlag, New York (2001), second ed. | MR | Zbl

[8] C. Bandle, Isoperimetric inequalities and applications. Vol. 7 of Monographs and Studies in Mathematics. Pitman (Advanced Publishing Program), Boston, Mass.-London (1980). | MR | Zbl

[9] R. J. Biezuner, Best constants in Sobolev trace inequalities. Nonlinear Anal. 54 (2003) 575–589. | MR | Zbl | DOI

[10] F. Brock, An isoperimetric inequality for eigenvalues of the Stekloff problem. ZAMM Z. Angew. Math. Mech. 81 (2001) 69–71. | MR | Zbl | DOI

[11] D. Bucur, V. Ferone, C. Nitsch and C. Trombetti, Weinstock inequality in higher dimensions. J. Differ. Geom. 118 (2021) 1–21. | MR | Zbl | DOI

[12] D. Bucur and M. Nahon, Stability and instability issues of the Weinstock inequality. Trans. Am. Math. Soc. 374 (2021) 2201–2223. | MR | Zbl | DOI

[13] A. M. H. Chorwadwala and R. Mahadevan, An eigenvalue optimization problem for the p -Laplacian. Proc. Roy. Soc. Edinburgh Sect. A 145 (2015) 1145–1151. | MR | Zbl | DOI

[14] A. M. H. Chorwadwala and M. K. Vemuri, Two functionals connected to the Laplacian in a class of doubly connected domains on rank one symmetric spaces of non-compact type. Geom. Dedicata 167 (2013) 11–21. | MR | Zbl | DOI

[15] G. Crasta, I. Fragalà and F. Gazzola, A sharp upper bound for the torsional rigidity of rods by means of web functions. Arch. Ration. Mech. Anal. 164 (2002) 189–211. | MR | Zbl | DOI

[16] B. Dittmar, Zu einem Stekloffschen Eigenwertproblem in Ringgebieten. Mitt. Math. Sem. Giessen (1996) 1–7. | MR | Zbl

[17] A. El Soufi and E. M. Harrell, Ii, On the placement of an obstacle so as to optimize the Dirichlet heat trace. SIAM J. Math. Anal. 48 (2016) 884–894. | MR | Zbl | DOI

[18] A. El Soufi and R. Kiwan, Extremal first Dirichlet eigenvalue of doubly connected plane domains and dihedral symmetry. SIAM J. Math. Anal. 39 (2007/08) 1112–1119. | MR | Zbl | DOI

[19] A. El Soufi and R. Kiwan, Where to place a spherical obstacle so as to maximize the second Dirichlet eigenvalue. Commun. Pure Appl. Anal. 7 (2008) 1193–1201. | MR | Zbl | DOI

[20] J. F. Escobar, Sharp constant in a Sobolev trace inequality. Indiana Univ. Math. J. 37 (1988) 687–698. | MR | Zbl | DOI

[21] G. Faber, Dass unter allen homogenen membranen von gleicher fläche und gleicher spannung die kreisförmige den tiefsten grundtongibt. Sitzungsberichte der mathematischphysikalischen Klasse der Bauerischen Akademie der Wissenschaften zu München Jahrgang (1923) 169–172. | JFM

[22] J. Fernández Bonder, R. Orive and J. D. Rossi, The best Sobolev trace constant in domains with holes for critical or subcritical exponents. ANZIAM J. 49 (2007) 213–230. | MR | Zbl | DOI

[23] J. Fernández Bonder, J. D. Rossi and N. Wolanski, Regularity of the free boundary in an optimization problem related to the best Sobolev trace constant. SIAM J. Control Optim. 44 (2005) 1614–1635. | MR | Zbl | DOI

[24] A. Fraser and R. Schoen, Shape optimization for the Steklov problem in higher dimensions. Adv. Math. 348 (2019) 146–162. | MR | Zbl | DOI

[25] N. Gavitone, D. A. La Manna, G. Paoli and L. Trani, A quantitative Weinstock inequality for convex sets. Calc. Var. Partial Differential Equ. 59 (2020) 2. | MR | Zbl | DOI

[26] N. Gavitone, G. Paoli, G. Piscitelli and R. Sannipoli, An isoperimetric inequality for the first Steklov–Dirichlet Laplacian eigenvalue of convex sets with a spherical hole (2021). | MR | Zbl

[27] B. Georgiev and M. Mukherjee, On maximizing the fundamental frequency of the complement of an obstacle. C. R. Math. Acad. Sci. Paris 356 (2018) 406–411. | MR | Zbl | DOI

[28] A. Girouard, M. Karpukhin and J. Lagacé, Continuity of eigenvalues and shape optimisation for Laplace and Steklov problems. Geom. Funct. Anal. 31 (2021) 513–561. | MR | Zbl | DOI

[29] A. Girouard and I. Polterovich, Spectral geometry of the Steklov problem (survey article). J. Spectr. Theory 7 (2017) 321–359. | MR | Zbl | DOI

[30] D. S. Grebenkov and B.-T. Nguyen, Geometrical structure of Laplacian eigenfunctions. SIAM Rev. 55 (2013) 601–667. | MR | Zbl | DOI

[31] M. Hantke, Summen reziproker Eigenwerte, PhD thesis, Mathematisch-Naturwissenschaftlich-Technischen Fakultät der Martin-Luther-Universität Hall, Wittenberg (2006). | Zbl

[32] E. M. Harrell, Ii, P. Kröger and K. Kurata, On the placement of an obstacle or a well so as to optimize the fundamental eigenvalue. SIAM J. Math. Anal. 33 (2001) 240–259. | MR | Zbl | DOI

[33] A. Henrot, Extremum problems for eigenvalues of elliptic operators. Frontiers in Mathematics, Birkhäuser Verlag, Basel (2006). | MR | Zbl | DOI

[34] A. Henrot and D. Zucco, Optimizing the first Dirichlet eigenvalue of the Laplacian with an obstacle. Ann. Sc. Norm. Super. Pisa Cl. Sci. 19 (2019) 1535–1559. | MR | Zbl

[35] J. Hersch, Contribution to the method of interior parallels applied to vibrating membranes, in Studies in mathematical analysis and related topics. Stanford Univ. Press, Stanford, Calif. (1962) 132–139. | MR | Zbl

[36] J. Hong, M. Lim and D.-H. Seo, On the first Steklov–Dirichlet eigenvalue for eccentric annuli. Annali di Matematica (2021). | DOI | MR | Zbl

[37] S. Kesavan, On two functionals connected to the Laplacian in a class of doubly connected domains. Proc. Roy. Soc. Edinburgh Sect. A 133 (2003) 617–624. | MR | Zbl | DOI

[38] R. Kiwan, On the nodal set of a second Dirichlet eigenfunction in a doubly connected domain. Annales de la Faculté des sciences de Toulouse : Mathématiques, Ser. 6 (2018) 863–873. | MR | Zbl | Numdam

[39] E. Krahn, Über eine von Rayleigh formulierte Minimaleigenschaft des Kreises. Math. Ann. 94 (1925) 97–100. | MR | JFM | DOI

[40] D. H. Lehmer, Interesting series involving the central binomial coefficient. Am. Math. Monthly 92 (1985) 449–457. | MR | Zbl | DOI

[41] G. Paoli, G. Piscitelli and R. Sannipoli, A stability result for the Steklov Laplacian eigenvalue problem with a spherical obstacle. Commun. Pure Appl. Anal. 20 (2021) 145–158. | MR | Zbl | DOI

[42] G. Paoli, G. Piscitelli and L. Trani, Sharp estimates for the first p -Laplacian eigenvalue and for the p -torsional rigidity on convex sets with holes. ESAIM: COCV 26 (2020) 111. | MR | Zbl | Numdam

[43] L. E. Payne and H. F. Weinberger, Some isoperimetric inequalities for membrane frequencies and torsional rigidity. J. Math. Anal. Appl. 2 (1961) 210–216. | MR | Zbl | DOI

[44] L. R. Quinones, A critical domain for the first normalized nontrivial Steklov eigenvalue among planar annular domains. Preprint (2019). | Zbl

[45] A. G. Ramm and P. N. Shivakumar, Inequalities for the minimal eigenvalue of the Laplacian in an annulus. Math. Inequal. Appl. 1 (1998) 559–563. | MR | Zbl

[46] D.-H. Seo, A shape optimization problem for the first mixed Steklov-Dirichlet eigenvalue. Ann. Global Anal. Geom. 59 (2021) 345–365. | MR | Zbl | DOI

[47] G. Szegö, Inequalities for certain eigenvalues of a membrane of given area. J. Ratl. Mech. Anal. 3 (1954) 343–356. | MR | Zbl

[48] S. Verma and G. Santhanam, On eigenvalue problems related to the Laplacian in a class of doubly connected domains. Monatsh. Math. 193 (2020) 879–899. | MR | Zbl | DOI

[49] H. F. Weinberger, An isoperimetric inequality for the N -dimensional free membrane problem. J. Ratl. Mech. Anal. 5 (1956) 633–636. | MR | Zbl

[50] R. Weinstock, Inequalities for a classical eigenvalue problem. J. Ratl. Mech. Anal. 3 (1954) 745–753. | MR | Zbl

[51] A. Yger, Analyse Complexe. https://www.math.u-bordeaux.fr/~ayger/coursAC-2011.pdf [accessed 19.11. 2021].

Cité par Sources :