Necessary optimality condition for the minimal time crisis relaxing transverse condition via regularization
ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 105

We derive necessary optimality conditions for the time of crisis problem under a more general hypothesis than the usual one encountered in the hybrid setting, which requires that any optimal solution should cross the boundary of the constraint set transversely. Doing so, we apply the Pontryagin Maximum Principle to a sequence of regular optimal control problems whose integral cost approximates the time of crisis. Optimality conditions are derived by passing to the limit in the Hamiltonian system (without the use of the hybrid maximum principle). This convergence result essentially relies on the boundedness of the sequence of adjoint vectors in L$$. Our main contribution is to relate this property to the boundedness in L1 of a suitable sequence which allows to avoid the use of the transverse hypothesis on optimal paths. An example with non-transverse trajectories for which necessary conditions are derived highlights the use of this new condition.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/cocv/2021102
Classification : 34H05, 49K15, 49J45, 34A38
Keywords: Time crisis, Necessary optimality conditions, Hybrid Maximum Principle, Regularization, Transverse crossing time
@article{COCV_2021__27_1_A107_0,
     author = {Bayen, T\'erence and Boumaza, Kenza and Rapaport, Alain},
     title = {Necessary optimality condition for the minimal time crisis relaxing transverse condition \protect\emph{via} regularization},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {27},
     doi = {10.1051/cocv/2021102},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/cocv/2021102/}
}
TY  - JOUR
AU  - Bayen, Térence
AU  - Boumaza, Kenza
AU  - Rapaport, Alain
TI  - Necessary optimality condition for the minimal time crisis relaxing transverse condition via regularization
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2021
VL  - 27
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/cocv/2021102/
DO  - 10.1051/cocv/2021102
LA  - en
ID  - COCV_2021__27_1_A107_0
ER  - 
%0 Journal Article
%A Bayen, Térence
%A Boumaza, Kenza
%A Rapaport, Alain
%T Necessary optimality condition for the minimal time crisis relaxing transverse condition via regularization
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2021
%V 27
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2021102/
%R 10.1051/cocv/2021102
%G en
%F COCV_2021__27_1_A107_0
Bayen, Térence; Boumaza, Kenza; Rapaport, Alain. Necessary optimality condition for the minimal time crisis relaxing transverse condition via regularization. ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 105. doi: 10.1051/cocv/2021102

[1] S. M. Aseev and A. I. Smirnov, Necessary first-order conditions for optimal crossing of a given region. Comput. Math. Model. 18 (2007) 397–419.

[2] J.-P. Aubin, Viability Theory, Systems & Control: Foundations & Applications. Birkhäuser Boston (1991).

[3] J.-P. Aubin, A. M. Bayen and P. Saint-Pierre, Viability Theory New Directions, second editions. Springer, Heidelberg (2011).

[4] G. Barles, A. Briani and E. Trélat, Value function for regional problems via dynamic programming and Pontryagin maximum principle. Math. Control Relat. Fields 8 (2018) 509–533.

[5] T. Bayen, K. Boumaza and A. Rapaport, Penalty function method for the minimal time crisis problem. ESAIM Proc. Surveys 71 (2021) 21–32.

[6] T. Bayen and L. Pfeiffer, Second-order analysis for the time crisis problem. J. Convex Anal. 27 (2020) 139–163.

[7] T. Bayen and A. Rapaport, About Moreau-Yosida regularization of the minimal time crisis problem. J. Convex Anal. 23 (2016) 263–290.

[8] T. Bayen and A. Rapaport, About the minimal time crisis problem. ESAIM Proc. Surveys 57 (2017) 1–11.

[9] T. Bayen and A. Rapaport, Minimal time crisis versus minimum time to reach a viability kernel: a case study in the prey-predator model. Optim. Control Appl. Meth. 40 (2019) 330–350.

[10] F. H. Clarke, Functional Analysis, Calculus of Variation, Optimal control. Vol. 264 of Graduate Texts in Mathematics. Springer, London (2013).

[11] F. H. Clarke, Yu. S. Ledyaev, R. J. Stern and P. R. Wolenski, Nonsmooth Analysis and Control Theory. Graduate Texts in Mathematics. Springer (1998).

[12] A. V. Dmitruk, The hybrid maximum principle is a consequence of Pontryagin maximum principle. Syst. Control Lett. 57 (2008) 964–970.

[13] A. V. Dmitruk and A. M. Kaganovich, Maximum principle for optimal control problems with intermediate constraints. Comput. Math. Model. 22 (2011) 180–215.

[14] A. V. Dmitruk and A. M. Kaganovich, Quadratic order conditions for an extended weak minimum in optimal control problems with intermediate and mixed constraints. Discrete Contin. Dyn. Syst. 29 (2011) 523–545.

[15] L. Doyen and P. Saint-Pierre, Scale of viability and minimal time of crisis. Set-Valued Var. Anal. 5 (1997) 227–246.

[16] M. Garavello and B. Piccoli, Hybrid necessary principle. SIAM J. Control Optim. 43 (2005) 1867–1887.

[17] T. Haberkorn and E. Trélat, Convergence results for smooth regularizations of hybrid nonlinear optimal control problems. SIAM J. Control Optim. 49 (2011) 1498–1522.

[18] L. S. Pontryagin, V. G. Boltyanskiy, R. V. Gamkrelidze and E. F. Mishchenko, The Mathematical Theory of Optimal Processes. The Macmillan Co., New York (1964).

[19] C. Silva and E. Trélat, Asymptotic approach on conjugate points for minimal time bang–bang controls. Syst. Control Lett. 59 (2010) 720–733.

[20] A. Smirnov, Necessary optimality conditions for a class of optimal control problems with discontinuous integrand. Proc. Steklov Inst. Math. 262 (2008) 213–230.

[21] Team Commands, Inria Saclay, BOCOP: an open source toolbox for optimal control. http://bocop.org.

[22] R. Vinter, Optimal Control, Systems and Control: Foundations and Applications. Birkhäuser, Boston (2000).

[23] M. I. Zelikin and V. F. Borisov, Theory of Chattering Control. Systems & Control: Foundations & Applications, Birkhäuser (1994).

Cité par Sources :