Continuity of the value function for deterministic optimal impulse control with terminal state constraint
ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 104

Deterministic optimal impulse control problem with terminal state constraint is considered. Due to the appearance of the terminal state constraint, the value function might be discontinuous in general. The main contribution of this paper is the introduction of an intrinsic condition under which the value function is proved to be continuous. Then by a Bellman dynamic programming principle, the corresponding Hamilton-Jacobi-Bellman type quasi-variational inequality (QVI, for short) is derived. The value function is proved to be a viscosity solution to such a QVI. The issue of whether the value function is characterized as the unique viscosity solution to this QVI is carefully addressed and the answer is left open challengingly.

DOI : 10.1051/cocv/2021101
Classification : 49N25, 49L20, 49L25
Keywords: Optimal impulse control, terminal state constraint, continuity of value function, Hamilton-Jacobi-Bellman quasi-variational inequality, viscosity solution
@article{COCV_2021__27_1_A106_0,
     author = {Zhou, Yue and Feng, Xinwei and Yong, Jiongmin},
     title = {Continuity of the value function for deterministic optimal impulse control with terminal state constraint},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {27},
     doi = {10.1051/cocv/2021101},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/cocv/2021101/}
}
TY  - JOUR
AU  - Zhou, Yue
AU  - Feng, Xinwei
AU  - Yong, Jiongmin
TI  - Continuity of the value function for deterministic optimal impulse control with terminal state constraint
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2021
VL  - 27
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/cocv/2021101/
DO  - 10.1051/cocv/2021101
LA  - en
ID  - COCV_2021__27_1_A106_0
ER  - 
%0 Journal Article
%A Zhou, Yue
%A Feng, Xinwei
%A Yong, Jiongmin
%T Continuity of the value function for deterministic optimal impulse control with terminal state constraint
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2021
%V 27
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2021101/
%R 10.1051/cocv/2021101
%G en
%F COCV_2021__27_1_A106_0
Zhou, Yue; Feng, Xinwei; Yong, Jiongmin. Continuity of the value function for deterministic optimal impulse control with terminal state constraint. ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 104. doi: 10.1051/cocv/2021101

[1] M. Bardi and I. Capuzzo-Dolcetta, Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations. Birkhäuser, Boston (1997).

[2] G. Barles, Quasi-variational inequalities and first-order Hamilton-Jacobi equations. Nonlinear Anal.: Theory, Methods Appl. 9 (1985) 131–148.

[3] G. Barles, Deterministic impluse control problems. SIAM J. Control Optim. 23 (1985) 419–432.

[4] C. Belak, S. Christensen and F. T. Seifried, A general verification result for stochastic impulse control problems. SIAM J. Control Optim. 55 (2019) 627–649.

[5] R. Bellma, Dynamic Programming. Princeton Univ. Press, Princeton (1957).

[6] A. Bensoussan and J.-L. Lions, Nouvells formulation de problèmes de contrôle impulsonnel et applications. C. R. Acad. Sci. Paris 276 (1973) 1182–1192.

[7] A. Bensoussan and J.-L. Lions, Impulse Control and Quasi-Variational Inequalities. Bordes, Paris (1984).

[8] A. Bensoussan and C. S. Tapiero, Impulsive control in management: prospects and applications. J. Optim. Theory Appl. 17 (1982) 419–442.

[9] M. Chahim, R. F. Hartl and P. M. Kort, A tutorial on the deterministic impulse control maximum principle: necessary and sufficient optimality conditions. Eur. J. Oper. Res. 219 (2012) 18–26.

[10] L. Chu, T. Kompas and Q. Grafton, Impulse controls and uncertainty in economics: method and application. Environ. Model. Softw. 65 (2015) 50–57.

[11] M. G. Crandall and P.-L. Lions, Viscosity solutions of Hamilton-Jacobi equations. Trans. AMS 277 (1983) 1–42.

[12] V. Dykhta and O. Samsonuk, Maximum principle for nonsmooth optimal impulse problems. Proc. IFAC Nonlinear Control Systems (2001) 1303–1307.

[13] B. El Asri, Deterministic minimax impulse control in finite horizon: the viscosity solution approach. ESAIM COCV 19 (2013) 63–77.

[14] N. El Farouq, Degenerate first-order quasi-variational inequalities: an approach to approximate the value function. SIAM J. Control Optim. 55 (2017) 2714–2733.

[15] N. El Farouq, G. Barles and P. Bernhard, Deterministic minimax impulse control. Appl. Math. Optim. 61 (2010) 353–378.

[16] X. Feng, Maximum principle for optimal control problems involving impulse controls with nonsmooth data. Stochastics 88 (2016) 1188–1206.

[17] W. H. Fleming and H. M. Soner, Controlled Markov Processes and Viscosity Solutions. Springer-Verlag, New York (1992).

[18] Y. Hu and J. Yong, Maximum principle for stochastic optimal impulse controls. Chin. Ann. Math. Ser. A, Suppl. 12 (1991) 109–114 (in Chinese).

[19] R. Korn, Some applications of impulse control in mathematical finance. Math. Methods Oper. Res. 50 (1999) 189–218.

[20] R. Korn, Y. Melnyk and F. T. Seifried, Stochastic impulse control with regime-switching dynamics. Eur. J. Oper. Res. 260 (2017) 1024–1042.

[21] R. Leander, S. Lenhart and V. Protopopescu, Optimal control of continuous systems with impusle controls. Optim. Control Appl. Meth. 36 (2015) 535–549.

[22] S. M. Lenhart, Viscosity solutions associated with impulse control problems for piecewise-deterministic process. Internat. J. Math. Math. Sci. 12 (1989) 145–157.

[23] X. Li and J. Yong, Optimal Control Theory for Infinite Dimensional Systems. Birkhäuser, Boston (1995).

[24] J. L. Menaldi, Optimal impulse control problems for degenerate diffusion with jumps. Acta Math. Appl. 8 (1987) 165–198.

[25] J. L. Mendaldi and M. Robin, On some impulse control problems with constraint. SIAM J. Control Optim. 55 (2017) 3204–3225.

[26] A. Piunovskiy, A. Plakhov and M. Tumanov, Optimal impulse control os a SIR epidemic. Optim. Control Appl. Meth. 41 (2020) 448–468.

[27] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Misjcjenko, The Mathematical Theory of Optimal Processes. Interscience, New York (1962).

[28] R. Rempala and J. Zabczyk, On the maximum principle for Deterministic impulse control problems. J. Optim. Theory Appl. 59 (1988) 281–288.

[29] H. M. Soner and N. Touzi, Stochastic target problems, dynamic programming and viscosity solutions. SIAM J. Control Optim. 41 (2002) 404–424.

[30] H. J. Sussmann, Small-time local controllability and continuity of the optimal time function for linear systems. J. Optim. Theory Appl. 53 (1987) 281–296.

[31] S. Tang and J. Yong, Finite horizon stochastic optimal switching and impulse controls with a viscosity solution approach. Stochastics Stochastics Reports 45 (1993) 145–176.

[32] N. Touzi, Optimal Stochastic Control, Stochastic Target Problems, and Backward SDE. Fields Institute Monographs, 29, Springer, New York (2013).

[33] Z. Wu and F. Zhang, Maximum principle for stochastic recursive optimal control problems involving impusle controls. Abstr. Appl. Anal. (2012) Art. ID 709682.

[34] V. Yadav and S. N. Balakrishnan, Optimal impulse control of systems with control constraints and application to HIV treatment. Proc. Am. Control Conf . (2006) 4824–4829.

[35] J. Yong, Systems governed by ordinary differential equations with continuous, switching and impulse controls. Appl. Math. Optim. 20 (1989) 223–236.

[36] J. Yong, Zero-sum differential games involving impulse controls. Appl. Math. Optim. 29 (1994) 243–261.

[37] J. Yong, Differential Games: A Concise Introduction. World Scientific, Singapore (2015).

[38] J. Yong and P. Zhang, Necessary conditions of optimal impulse controls for distributed parameter systems. Bull. Aust. Math. Soc. 45 (1992) 305–326.

[39] J. Yong and X. Y. Zhou, Stochastic Controls: Hamiltonian Systems and HJB Equations. Springer-Verlag, New York (1999).

Cité par Sources :