New perspectives on output feedback stabilization at an unobservable target
ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 102

We address the problem of dynamic output feedback stabilization at an unobservable target point. The challenge lies in according the antagonistic nature of the objective and the properties of the system: the system tends to be less observable as it approaches the target. We illustrate two main ideas: well chosen perturbations of a state feedback law can yield new observability properties of the closed-loop system, and embedding systems into bilinear systems admitting observers with dissipative error systems allows to mitigate the observability issues. We apply them on a case of systems with linear dynamics and nonlinear observation map and make use of an ad hoc finite-dimensional embedding. More generally, we introduce a new strategy based on infinite-dimensional unitary embeddings. To do so, we extend the usual definition of dynamic output feedback stabilization in order to allow infinite-dimensional observers fed by the output. We show how this technique, based on representation theory, may be applied to achieve output feedback stabilization at an unobservable target.

DOI : 10.1051/cocv/2021097
Classification : 93D15, 93B07, 93C10, 22D10
Keywords: Output feedback, stabilization, observability, nonlinear systems, dissipative systems, representation theory
@article{COCV_2021__27_1_A104_0,
     author = {Brivadis, Lucas and Gauthier, Jean-Paul and Sacchelli, Ludovic and Serres, Ulysse},
     title = {New perspectives on output feedback stabilization at an unobservable target},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {27},
     doi = {10.1051/cocv/2021097},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/cocv/2021097/}
}
TY  - JOUR
AU  - Brivadis, Lucas
AU  - Gauthier, Jean-Paul
AU  - Sacchelli, Ludovic
AU  - Serres, Ulysse
TI  - New perspectives on output feedback stabilization at an unobservable target
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2021
VL  - 27
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/cocv/2021097/
DO  - 10.1051/cocv/2021097
LA  - en
ID  - COCV_2021__27_1_A104_0
ER  - 
%0 Journal Article
%A Brivadis, Lucas
%A Gauthier, Jean-Paul
%A Sacchelli, Ludovic
%A Serres, Ulysse
%T New perspectives on output feedback stabilization at an unobservable target
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2021
%V 27
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2021097/
%R 10.1051/cocv/2021097
%G en
%F COCV_2021__27_1_A104_0
Brivadis, Lucas; Gauthier, Jean-Paul; Sacchelli, Ludovic; Serres, Ulysse. New perspectives on output feedback stabilization at an unobservable target. ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 102. doi: 10.1051/cocv/2021097

[1] A. Ajami, M. Brouche, J.-P. Gauthier and L. Sacchelli, Output stabilization of military UAV in the unobservable case, in 2020 IEEE Aerospace Conference (2020) 1–6.

[2] A. Ajami, J.-P. Gauthier and L. Sacchelli, Dynamic output stabilization of control systems: an unobservable kinematic drone model. To appear in Automatica (2020).

[3] V. Andrieu and L. Praly, On the existence of a Kazantzis–Kravaris/Luenberger observer. SIAM J. Control Optim. 45 (2006) 432–456.

[4] V. Andrieu and L. Praly, A unifying point of view on output feedback designs for global asymptotic stabilization. Automatica 45 (2009) 1789–1798.

[5] A. O. Barut and R. Ŗaczka, Theory of group representations and applications. World Scientific Publishing Co., Singapore, second ed. (1986).

[6] P. Bernard, L. Praly, V. Andrieu and H. Hammouri, On the triangular canonical form for uniformly observable controlled systems. Automatica 85 (2017) 293–300.

[7] H. Brezis, Functional analysis, Sobolev spaces and partial differential equations. Universitext. Springer, New York (2011).

[8] L. Brivadis, V. Andrieu, U. Serres and J.-P. Gauthier, Luenberger observers for infinite-dimensional systems, back and forth nudging and application to a crystallization process. To appear in: SIAM J. Control Optim. (2020).

[9] L. Brivadis, J.-P. Gauthier, L. Sacchelli and U. Serres, Avoiding observability singularities in output feedback bilinear systems. Working paper orpreprint (2019).

[10] L. Brivadis and L. Sacchelli, A switching technique for output feedback stabilization at an unobservable target. Working paper orpreprint (2021).

[11] L. Brivadis, L. Sacchelli, V. Andrieu, J.-P. Gauthier and U. Serres, From local to global asymptotic stabilizability for weakly contractive control systems. Automatica 124 (2020) 109308.

[12] F. Celle, J.-P. Gauthier, D. Kazakos and G. Sallet, Synthesis of nonlinear observers: a harmonic-analysis approach. Math. Syst. Theory 22 (1989) 291–322.

[13] P. Combes, A. K. Jebai, F. Malrait, P. Martin and P. Rouchon, Adding virtual measurements by signal injection, in 2016 American Control Conference (ACC) (2016) 999–1005.

[14] J.-M. Coron, On the stabilization of controllable and observable systems by an output feedback law. Math. Control Signals Syst. 7 (1994) 187–216.

[15] J.-M. Coron, Relations entre commandabilité et stabilisations non linéaires, in Nonlinear partial differential equations and their applications. Collège de France Seminar, Vol. XI (Paris, 1989–1991). Vol. 299 of Pitman Research Notes In Mathematics Series, Longman Scientific & Technical, Harlow (1994) 68–86.

[16] K.-J. Engel and R. Nagel, One-parameter semigroups for linear evolution equations. Vol. 194 of Graduate Texts in Mathematics. With contributions by S. Brendle, M. Campiti, T. Hahn, G. Metafune, G. Nickel, D. Pallara, C. Perazzoli, A. Rhandi, S. Romanelli and R. Schnaubelt. Springer-Verlag, New York (2000).

[17] E. Flayac, Coupled methods of nonlinear estimation and control applicable to terrain-aided navigation, Thèse de doctorat dirigée par Jean, Frédéric Mathématiques appliquées. Ph.D. thesis, Université Paris-Saclay (ComUE) (2019).

[18] J.-P. Gauthier and I. Kupka, Deterministic observation theory and applications. Cambridge University Press, Cambridge (2001).

[19] T.-B. Hoang, W. Pasillas-Lépine and W. Respondek, A switching observer for systems with linearizable error dynamics via singular time-scaling, in MTNS 2014, Groningen, Netherlands (2014).

[20] K. Ito and F. Kappel, Evolution equations and approximations. Vol. 61 of Series on Advances in Mathematics for Applied Sciences. World Scientific Publishing Co., Inc., River Edge, NJ (2002).

[21] S. Jafarpour, P. Cisneros-Velarde and F. Bullo, Weak and semi-contraction for network systems and diffusively-coupled oscillators. IEEE Trans. Autom. Control (2021) 1–1.

[22] P. Jouan and J. P. Gauthier, Finite singularities of nonlinear systems: output stabilization, observability, and observers. J. Dyn. Control Syst. 2 (1996) 255–288.

[23] V. Jurdjevic and J. P. Quinn, Controllability and stability. J. Differ. Equ. 28 (1978) 381–389.

[24] M. A. Krasnosel’Skiĭ and P. P. Zabreĭko, Geometrical methods of nonlinear analysis. Vol. 263 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Translated from the Russian by Christian C. Fenske. Springer-Verlag, Berlin (1984).

[25] M. Krichman, E. D. Sontag and Y. Wang, Input-output-to-state stability. SIAM J. Control Optim. 39 (2001) 1874–1928.

[26] A. Laforgia, Inequalities for Bessel functions. J. Comput. Appl. Math. 15 (1986) 75–81.

[27] M. Lagache, U. Serres and J. Gauthier, Exact output stabilization at unobservable points: Analysis via an example, in 2017 IEEE 56th Annual Conference on Decision and Control (CDC) (2017) 6744–6749.

[28] I. R. Manchester and J.-J. E. Slotine, Transverse contraction criteria for existence, stability, and robustness of a limit cycle. Syst. Control Lett. 63 (2014) 32–38.

[29] F. Mazenc and L. Praly, Adding integrations, saturated controls, and stabilization for feedforward systems. IEEE Trans. Autom. Control 41 (1996) 1559–1578.

[30] R. Narasimhan, Introduction to the theory of analytic spaces. Lecture Notes in Mathematics, No. 25. Springer-Verlag, Berlin-New York (1966).

[31] D. Nešić and E. Sontag, Input-to-state stabilization of linear systems with positive outputs. Syst. Control Lett. 35 (1998) 245–255.

[32] E. Neuman, Inequalities involving Bessel functions of the first kind. J. Inequal. Pure Appl. Math. 5 (2004) 94.

[33] A. Pazy, Semigroups of linear operators and applications to partial differential equations. Vol. 44 of Applied Mathematical Sciences. Springer-Verlag, New York (1983).

[34] A. Rapaport and D. Dochain, A robust asymptotic observer for systems that converge to unobservable states–a batch reactor case study. IEEE Trans. Autom. Control 65 (2020) 2693–2699.

[35] L. Sacchelli, L. Brivadis, V. Andrieu, U. Serres and J.-P. Gauthier, Dynamic output feedback stabilization of non-uniformly observable dissipative systems. To appear in IFAC WC 2020 (2020).

[36] H. Shim and A. Teel, Asymptotic controllability and observability imply semiglobal practical asymptotic stabilizability by sampled-data output feedback. Automatica 39 (2003) 441–454.

[37] C. L. Siegel, Über einige Anwendungen diophantischer Approximationen [reprint of Abhandlungen der Preußischen Akademie der Wissenschaften. Physikalisch-mathematische Klasse 1929, Nr. 1], in On some applications of Diophantine approximations, vol. 2 of Quad./Monogr., Ed. Norm., Pisa (2014) 81–138.

[38] E. D. Sontag, Conditions for abstract nonlinear regulation. Inf. Control 51 (1981) 105–127.

[39] D. Surroop, P. Combes, P. Martin and P. Rouchon, Adding virtual measurements by PWM-induced signal injection, in 2020 American Control Conference (ACC) (2020)  2692–2698.

[40] A. Teel and L. Praly, Global stabilizability and observability imply semi-global stabilizability by output feedback. Syst. Control Lett. 22 (1994) 313–325.

[41] A. Teel and L. Praly, Tools for semiglobal stabilization by partial state and output feedback. SIAM J. Control Optim. 33 (1995) 1443–1488.

[42] A. R. Teel and L. Praly, A smooth Lyapunov function from a class-𝒦ℒ estimate involving two positive semidefinite functions. ESAIM: COCV 5 (2000) 313–367.

[43] M. Tucsnak and G. Weiss, Observation and control for operator semigroups, Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks]. Birkhäuser Verlag, Basel (2009).

[44] N. J. Vilenkin, Special functions and the theory of group representations, Translated from the Russian by V. N. Singh. Translations of Mathematical Monographs, Vol. 22. American Mathematical Society, Providence, R. I. (1968).

Cité par Sources :

This research was partially funded by the French Grant ANR ODISSE (ANR-19-CE48-0004-01) and by the ANR SRGI (ANR-15-CE40-0018).