Anisotropic mean curvature flow of Lipschitz graphs and convergence to self-similar solutions
ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 97

We consider the anisotropic mean curvature flow of entire Lipschitz graphs. We prove existence and uniqueness of expanding self-similar solutions which are asymptotic to a prescribed cone, and we characterize the long time behavior of solutions, after suitable rescaling, when the initial datum is a sublinear perturbation of a cone. In the case of regular anisotropies, we prove the stability of self-similar solutions asymptotic to strictly mean convex cones, with respect to perturbations vanishing at infinity. We also show the stability of hyperplanes, with a proof which is novel also for the isotropic mean curvature flow.

DOI : 10.1051/cocv/2021096
Classification : 53C44, 35K93
Keywords: Anisotropic mean curvature flow, self-similar solutions, Long time behavior
@article{COCV_2021__27_1_A99_0,
     author = {Cesaroni, A. and Kr\"oner, H. and Novaga, M.},
     title = {Anisotropic mean curvature flow of {Lipschitz} graphs and convergence to self-similar solutions},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {27},
     doi = {10.1051/cocv/2021096},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/cocv/2021096/}
}
TY  - JOUR
AU  - Cesaroni, A.
AU  - Kröner, H.
AU  - Novaga, M.
TI  - Anisotropic mean curvature flow of Lipschitz graphs and convergence to self-similar solutions
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2021
VL  - 27
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/cocv/2021096/
DO  - 10.1051/cocv/2021096
LA  - en
ID  - COCV_2021__27_1_A99_0
ER  - 
%0 Journal Article
%A Cesaroni, A.
%A Kröner, H.
%A Novaga, M.
%T Anisotropic mean curvature flow of Lipschitz graphs and convergence to self-similar solutions
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2021
%V 27
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2021096/
%R 10.1051/cocv/2021096
%G en
%F COCV_2021__27_1_A99_0
Cesaroni, A.; Kröner, H.; Novaga, M. Anisotropic mean curvature flow of Lipschitz graphs and convergence to self-similar solutions. ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 97. doi: 10.1051/cocv/2021096

[1] B. Andrews, Volume-preserving anisotropic mean curvature flow. Indiana Univ. Math. J. 50 (2001) 783–827.

[2] G. Barles and P. E. Souganidis, A new approach to front propagation problems: theory and applications. Arch. Ratl. Mech. Anal. 141 (1998) 237–296.

[3] G. Bellettini, V. Caselles, A. Chambolle and M. Novaga, Crystalline mean curvature flow of convex sets. Arch. Ratl. Mech. Anal. 179 (2006) 109–152.

[4] H. Brézis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland Mathematics Studies, No. 5, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York (1973).

[5] A. Cesaroni and M. Novaga, Fractional mean curvature flow of Lipschitz graphs. Preprint (2021). | arXiv

[6] A. Chambolle, M. Morini, M. Novaga and M. Ponsiglione, Existence and uniqueness for anisotropic and crystalline mean curvature flows. J. Am. Math. Soc. 32 (2019) 779–824.

[7] A. Chambolle, M. Morini, M. Novaga and M. Ponsiglione, Generalized crystalline evolutions as limits of flows with smooth anisotropies. Anal. PDE 12 (2019) 789–813.

[8] A. Chambolle, M. Morini and M. Ponsiglione, Existence and uniqueness for a crystalline mean curvature flow. Commun. Pure Appl. Math. 70 (2017) 1084–1114.

[9] J. Clutterbuck and O. C. Schn’́Urer, Stability of mean convex cones under mean curvature flow. Math. Z. 267 (2011) 535–547.

[10] K. Ecker and G. Huisken, Mean curvature evolution of entire graphs. Ann. Math. (2) 130 (1989) 453–471.

[11] K. Ecker, Regularity theory for mean curvature flow. Vol. 57 of Progress in Nonlinear Differential Equations and their Applications, Birkhäuser Boston, Inc., Boston, MA (2004).

[12] M.-H. Giga, Y. Giga and H. Hontani, Self-similar expanding solutions in a sector for a crystalline flow. SIAM J. Math. Anal. 37 (2005) 1207–1226.

[13] Y. Giga, Surface evolution equations. Vol. 99 of Monographs in Mathematics. Birkhäuser Verlag, Basel (2006). A level set approach.

[14] Y. Giga and N. Požár, Approximation of general facets by regular facets with respect to anisotropic total variation energies and its application to crystalline mean curvature flow. Commun. Pure Appl. Math. 71 (2018) 1461–1491.

[15] Y. Giga and N. Požár, A level set crystalline mean curvature flow of surfaces. Adv. Differ. Equ. 21 (2016) 631–698.

[16] G. Huisken, Flow by mean curvature of convex surfaces into spheres. J. Differ. Geom. 20 (1984) 237–266.

[17] G. M. Lieberman, Second order parabolic differential equations. World Scientific Publishing Co., Inc., River Edge, NJ (1996).

[18] A. Lunardi, Analytic semigroups and optimal regularity in parabolic problems. Modern Birkhäuser Classics, Birkhäuser/Springer Basel AG, Basel (1995).

[19] M. Nara and M. Taniguchi, The condition on the stability of stationary lines in a curvature flow in the whole plane. J. Differ. Equ. 237 (2007) 61–76.

[20] N. S. Trudinger, On regularity and existence of viscosity solutions of nonlinear second order, elliptic equations. Vol. 2 of Progr. Nonlinear Differ. Equ. Appl.. Birkhäuser Boston, Boston, MA (1989).

[21] L. Wang, A Bernstein type theorem for self-similar shrinkers. Geom. Dedicata 151 (2011) 297–303.

Cité par Sources :

The authors were supported by the INDAM-GNAMPA and by the PRIN Project 2019/24 Variational methods for stationary and evolution problems with singularities and interfaces.