A minimal time optimal control for a drone landing problem
ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 99

We study a variant of the classical safe landing optimal control problem in aerospace engineering, introduced by Miele (1962), where the target was to land a spacecraft on the moon by minimizing the consumption of fuel. A more modern model consists in replacing the spacecraft by a hybrid gas-electric drone. Assuming that the drone has a failure and that the thrust (representing the control) can act in both vertical directions, the new target is to land safely by minimizing time, no matter of what the consumption is. In dependence of the initial data (height, velocity, and fuel), we prove that the optimal control can be of four different kinds, all being piecewise constant. Our analysis covers all possible situations, including the nonexistence of a safe landing strategy due to the lack of fuel or for heights/velocities for which also a total braking is insufficient to stop the drone.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/cocv/2021094
Classification : 34H10, 49J15, 49K15
Keywords: Optimal control, minimum time, drone
@article{COCV_2021__27_1_A101_0,
     author = {Gazzola, Filippo and Marchini, Elsa M.},
     title = {A minimal time optimal control for a drone landing problem},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {27},
     doi = {10.1051/cocv/2021094},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/cocv/2021094/}
}
TY  - JOUR
AU  - Gazzola, Filippo
AU  - Marchini, Elsa M.
TI  - A minimal time optimal control for a drone landing problem
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2021
VL  - 27
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/cocv/2021094/
DO  - 10.1051/cocv/2021094
LA  - en
ID  - COCV_2021__27_1_A101_0
ER  - 
%0 Journal Article
%A Gazzola, Filippo
%A Marchini, Elsa M.
%T A minimal time optimal control for a drone landing problem
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2021
%V 27
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2021094/
%R 10.1051/cocv/2021094
%G en
%F COCV_2021__27_1_A101_0
Gazzola, Filippo; Marchini, Elsa M. A minimal time optimal control for a drone landing problem. ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 99. doi: 10.1051/cocv/2021094

[1] A. Agrachev and Y. Sachkov, Control Theory from the Geometric Viewpoint. Vol. 87 of Encyclopaedia Math. Sciences. Springer, Berlin, 2004.

[2] R. Bonalli, B. Herisse and E. Trélat, Optimal control of endoatmospheric launch vehicle systems: Geometric and computational issues. IEEE Trans. Autom. Control 65 (2020) 2418–2433.

[3] B. Bonnard and M. Chyba, The Role of Singular Trajectories in Control Theory. Springer, Berlin (2003).

[4] B. Bonnard, L. Faubourg, G. Launay and E. Trélat, Optimal control with state constraints and the space shuttle re-entry problem. J. Dyn. Control Syst. 9 (2003) 155–199.

[5] B. Bonnard, L. Faubourg and E. Trélat, Optimal control of the atmospheric arc of a space shuttle and numerical simulations by multiple-shooting techniques. Math. Models Methods Appl. Sci. 15 (2005) 109–140.

[6] B. Bonnard and E. Trélat, Une approche géométrique du contrôle optimal de l’arc atmosphérique de la navette spatiale. ESAIM: COCV 7 (2002) 179–222.

[7] U. Boscain and B. Piccoli, Optimal syntheses for control systems on 2-D manifolds. Vol. 43 of Math. Appl.. Springer, Berlin (2004).

[8] H. O. Fattorini, Infinite-dimensional optimization and control theory. Cambridge University Press, Cambridge (1999).

[9] W. Fleming and R. Rishel, Deterministic and Stochastic Optimal Control. Springer (1975).

[10] F. Gazzola and E. M. Marchini, The moon lander optimal control problem revisited. Math. Eng. 3 (2021) 1–14.

[11] V. Jurdjevic, Geometric control theory. Vol. 52 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (1997).

[12] J. S. Meditch, On the problem of optimal thrust programming for a lunar soft landing. IEEE Trans. Automatic Control 9 (1964) 477–484.

[13] A. Miele, The calculus of variations in applied aerodynamics and flight mechanics, in Optimization techniques with applications to aerospace systems, edited by G. Leitman, Mathematics in Science and Engineering 5. Academic Press (1962) 99–170.

[14] H. Schättler and U. Ledzewicz, Geometric Optimal Control Theory, Methods, Examples. Springer, Berlin (2012).

[15] H. Schättler, The local structure of time-optimal trajectories in dimension 3 under generic conditions. SIAM J. Control Optim. 26 (1988) 899–918.

[16] H. J. Sussmann, The structure of time-optimal trajectories for single-input systems in the plane: The C$$ non singular case. SIAM J. Control Optim. 25 (1987) 856–905.

[17] E. Trélat, Optimal Control and Applications to Aerospace: Some Results and Challenges. J. Optim. Theory Appl. 154 (2012) 713–758.

[18] J. Zhu, E. Trélat and M. Cerf, Minimum time control of the rocket attitude reorientation associated with orbit dynamics. SIAM J. Control Optim. 54 (2016) 391–422.

Cité par Sources :