Cubic microlattices embedded in nematic liquid crystals: a Landau-de Gennes study
ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 95

We consider a Landau-de Gennes model for a connected cubic lattice scaffold in a nematic host, in a dilute regime. We analyse the homogenised limit for both cases in which the lattice of embedded particles presents or not cubic symmetry and then we compute the free effective energy of the composite material. In the cubic symmetry case, we impose different types of surface anchoring energy densities, such as quartic, Rapini-Papoular or more general versions, and, in this case, we show that we can tune any coefficient from the corresponding bulk potential, especially the phase transition temperature. In the case with loss of cubic symmetry, we prove similar results in which the effective free energy functional has now an additional term, which describes a change in the preferred alignment of the liquid crystal particles inside the domain. Moreover, we compute the rate of convergence for how fast the surface energies converge to the homogenised one and also for how fast the minimisers of the free energies tend to the minimiser of the homogenised free energy.

DOI : 10.1051/cocv/2021093
Classification : 35J50, 35B27, 76M50, 76A15
Keywords: Liquid crystals, Landau-de Gennes, Gamma-convergence, Cubic microlattices
@article{COCV_2021__27_1_A97_0,
     author = {Ceuca, Razvan-Dumitru},
     title = {Cubic microlattices embedded in nematic liquid crystals: a {Landau-de} {Gennes} study},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {27},
     doi = {10.1051/cocv/2021093},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/cocv/2021093/}
}
TY  - JOUR
AU  - Ceuca, Razvan-Dumitru
TI  - Cubic microlattices embedded in nematic liquid crystals: a Landau-de Gennes study
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2021
VL  - 27
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/cocv/2021093/
DO  - 10.1051/cocv/2021093
LA  - en
ID  - COCV_2021__27_1_A97_0
ER  - 
%0 Journal Article
%A Ceuca, Razvan-Dumitru
%T Cubic microlattices embedded in nematic liquid crystals: a Landau-de Gennes study
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2021
%V 27
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2021093/
%R 10.1051/cocv/2021093
%G en
%F COCV_2021__27_1_A97_0
Ceuca, Razvan-Dumitru. Cubic microlattices embedded in nematic liquid crystals: a Landau-de Gennes study. ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 95. doi: 10.1051/cocv/2021093

[1] R. Adams and J. Fournier, Sobolev Spaces. Academic Press, London (2003).

[2] S. Alama, L. Bronsard and X. Lamy, Minimizers of the Landau-de Gennes energy around a spherical colloid particle. Arch. Ratl. Mech. Anal. 222 (2016) 427–450.

[3] S. Alama, L. Bronsard and X. Lamy, Spherical particle in nematic liquid crystal under an external field: the Saturn ring regime. J. Nonlinear Sci. 2018 (2018) 1–23.

[4] T. Baldacchini, Three-Dimensional Microfabrication Using Two-Photon Polymerization. 1st Edition. Elsevier (2015).

[5] T. P. Bennett, G. D’Alessandro and K. R. Daly, Multiscale models of colloidal dispersion of particles in nematic liquid crystals. Phys. Rev. E 90 (2014) 062505.

[6] L. Berlyland, D. Cioranescu and D. Golovaty, Homogenization of Ginzburg-Landau model for a nematic liquid crystal with inclusions. J. de mathematiques pures et appliquées 84 (2016) 97–136.

[7] M. Buscaglia, T. Bellini, C. Chiccoli, F. Mantegazza, P. Pasini, M. Rotunno and C. Zannoni, Phys. Rev. E 74 (2006) 011706.

[8] M. C. Calderer, A. Desimone, D. Golovaty and A. Panchenko, An effective model for nematic liquid crystal composites with ferromagnetic inclusions. SIAM J. Appl. Math. 74 (2014) 237–262.

[9] G. Canevari, M. Ramaswamy and A. Majumdar, Radial symmetry on three-dimensional shells in the Landau-de Gennes theory. Physica D 314 (2016) 18–34.

[10] G. Canevari, A. Segatti and M. M. Veneroni, Morse’s index formula in VMO on compact manifold with boundary. J. Funct. Anal. 269 (2015) 3043–3082.

[11] G. Canevari and A. Segatti, Defects in Nematic Shells: a Γ-convergence discrete-to-continuum approach. Arch. Ratl. Mech. Anal. 229 (2018) 125–186.

[12] G. Canevari and A. Segatti, Variational analysis of nematic shells. Trends in Applications of Mathematics to Mechanics. Springer-INdAM series 27 (2018) 81–102.

[13] G. Canevari and A. D. Zarnescu, Design of effective bulk potentials for nematic liquid crystals via colloidal homogenisation. Math. Models Methods Appl. Sci. (2019) . | DOI

[14] G. Canevari and A. D. Zarnescu, Polydispersity and surface energy strength in nematic colloids. Math. Eng. 2 (2020) 290–312.

[15] D. Cioranescu and P. Donato, An introduction to homogenization. Oxford Lecture Series in Mathematics and Its Applications (1999).

[16] P.-G. De Gennes and J. Prost, The Physics of Liquid Crystals. International series of monographs on physics. Clarendon Press (1993).

[17] J. Griepentrog, W. Höppner, H.-C. Kaiser and J. Rehberg, A bi-Lipschitz continuous, volume preserving map from the unit ball onto a cube. Note di Matematica 28 (2008) 177–193.

[18] D. Jayasri, M. Ravnik and Š. Žumer, Shape tuning the colloidal assemblies in nematic liquid crystals. Soft Matter. 8 (2012) 1657.

[19] L. Longa, D. Montelesan and H. R. Trebin, An extension of the Landau-Ginzburg-de Gennes theory for liquid crystals. Liquid Crys. 2 (1987).

[20] N. J. Mottram and C. Newton, Introduction to Q-tensortheory (2014). Preprint . | arXiv

[21] I. Muševič, M. Škarabot, U. Tkalec, M. Ravnik and Š. Žumer, Two-dimensional nematic colloidal crystals self-assembled by topological defects. Science 313 (2006) 954.

[22] M. Ravnik, M. Škarabot, Š. Žumer, U. Tkalec, I. Poberaj, D. Babič, N. Osterman and I. Muševič. Entangled Nematic Colloidal Dimers and Wires. Phys. Rev. Lett. 99 (2007) 247801.

[23] F. Serra, S. Eaton, R. Cerbino, M. Buscaglia, G. Cerullo, R. Osellame and T. Bellini, Liquid crystals: nematic liquid crystals embedded in cubic microlattices: memory effects and bistable pixels (Adv. Funct. Mater. 32/2013). Adv. Funct. Mater. 23 (2013) 3990.

[24] F. Serra, K. C. Vishnubhatla, M. Buscaglia, R. Cerbino, R. Osellame, G. Cerullo and T. Bellini, Soft Matter 7 (2011) 10945.

[25] Y. Wang, G. Canevari and A. Majumdar, Order reconstruction for nematics on squares with isotropic inclusions: a Landau-de Gennes study. Preprint (2018). | arXiv

[26] W. P. Ziemer, Weakly differentiable functions. Springer-Verlag, New York (1989).

Cité par Sources :