Some of the main contributions of the highly cited mathematician Enrique Zuazua are outlined at the occasion of his sixtieth birthday. Through various anecdotes, it is shown that taking advantage of favourable chances is part of a fruitful career and can produce important results for the benefit of the whole community.
Première publication :
Publié le :
DOI : 10.1051/cocv/2021092
Keywords: Wave equations, stability, control theory, spectral analysis
@article{COCV_2021__27_1_A2_0,
author = {Coron, Jean-Michel and Haraux, Alain},
editor = {Buttazzo, G. and Casas, E. and de Teresa, L. and Glowinski, R. and Leugering, G. and Tr\'elat, E. and Zhang, X.},
title = {Introduction: {On} {Enrique}},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
year = {2021},
publisher = {EDP-Sciences},
volume = {27},
doi = {10.1051/cocv/2021092},
mrnumber = {4319600},
language = {en},
url = {https://www.numdam.org/articles/10.1051/cocv/2021092/}
}
TY - JOUR AU - Coron, Jean-Michel AU - Haraux, Alain ED - Buttazzo, G. ED - Casas, E. ED - de Teresa, L. ED - Glowinski, R. ED - Leugering, G. ED - Trélat, E. ED - Zhang, X. TI - Introduction: On Enrique JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2021 VL - 27 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/cocv/2021092/ DO - 10.1051/cocv/2021092 LA - en ID - COCV_2021__27_1_A2_0 ER -
%0 Journal Article %A Coron, Jean-Michel %A Haraux, Alain %E Buttazzo, G. %E Casas, E. %E de Teresa, L. %E Glowinski, R. %E Leugering, G. %E Trélat, E. %E Zhang, X. %T Introduction: On Enrique %J ESAIM: Control, Optimisation and Calculus of Variations %D 2021 %V 27 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/cocv/2021092/ %R 10.1051/cocv/2021092 %G en %F COCV_2021__27_1_A2_0
Coron, Jean-Michel; Haraux, Alain. Introduction: On Enrique. ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. E3. doi: 10.1051/cocv/2021092
[1] and , Large time asymptotics for partially dissipative hyperbolic systems. Arch. Ratl. Mech. Anal. 199 (2011) 177–227. | MR | Zbl | DOI
[2] and , Low frequency asymptotic analysis of a string with rapidly oscillating density. SIAM J. Appl. Math. 60 (2000) 1205–1233. | MR | Zbl | DOI
[3] , and , On the optimality of the observability inequalities for parabolic and hyperbolic systems with potentials. Ann. Inst. Henri Poincaré Anal. Non Linéaire 25 (2008) 1–41. | MR | Zbl | Numdam | DOI
[4] , and , Numerical meshes ensuring uniform observability of one-dimensional waves: construction and analysis. IMA J. Numer. Anal. 36 (2016) 503–542. | MR | DOI
[5] , and , Approximate controllability of the semilinear heat equation. Proc. Roy. Soc. Edinburgh Sect. A 125 (1995) 31–61. | MR | Zbl | DOI
[6] and , The cost of approximate controllability for heat equations: the linear case. Adv. Differ. Equ. 5 (2000) 465–514. | MR | Zbl
[7] and , Null and approximate controllability for weakly blowing up semilinear heat equations. Ann. Inst. Henri Poincaré Anal. Non Linéaire 17 (2000) 583–616. | MR | Zbl | Numdam | DOI
[8] , and , A numerical approach to the exact boundary controllability of the wave equation. I. Dirichlet controls: description of the numerical methods. Jpn. J. Appl. Math. 7 (1990) 1–76. | MR | Zbl | DOI
[9] , Semi-linear hyperbolic problems in bounded domains. Math. Rep. 3 (1987) i–xxiv and 1–281. | MR | Zbl
[10] and , Decay estimates for some semilinear damped hyperbolic problems. Arch. Ratl. Mech. Anal. 100 (1988) 191–206. | MR | Zbl | DOI
[11] and , Super-solutions of eigenvalue problems and the oscillation properties of second order evolution equations. J. Differ. Equ. 74 (1988) 11–28. | MR | Zbl | DOI
[12] and , Convergence of a two-grid algorithm for the control of the wave equation. J. Eur. Math. Soc. (JEMS) 11 (2009) 351–391. | MR | Zbl | DOI
[13] and , Boundary observability for the space semi-discretizations of the 1-D wave equation. ESAIM: M2AN 33 (1999) 407–438. | MR | Zbl | Numdam | DOI
[14] and , A direct method for the boundary stabilization of the wave equation. J. Math. Pures Appl. 69 (1990) 33–54. | MR | Zbl
[15] and , Decay rates for the three-dimensional linear system of thermoelasticity. Arch. Ratl. Mech. Anal. 148 (1999) 179–231. | MR | Zbl | DOI
[16] , and , Null controllability of the heat equation as singular limit of the exact controllability of dissipative wave equations. J. Math. Pures Appl. 79 (2000) 741–808. | MR | Zbl | DOI
[17] and , Localized solutions and filtering mechanisms for the discontinuous Galerkin semi-discretizations of the 1-d wave equation. C. R. Math. Acad. Sci. Paris 348 (2010) 1087–1092. | MR | Zbl | DOI
[18] and , High frequency wave packets for the Schrödinger equation and its numerical approximations. C. R. Math.Acad. Sci. Paris 349 (2011) 105–110. | MR | Zbl | DOI
[19] and , Numerical approximation of null controls for the heat equation: ill-posedness and remedies. Inverse Probl. 26 (2010) 085018. | MR | Zbl | DOI
[20] and , Convergence of a multigrid method for the controllability of a 1-d wave equation. C. R. Math. Acad. Sci. Paris 338 (2004) 413–418. | MR | Zbl | DOI
[21] , and , Optimal location of controllers for the one-dimensional wave equation. Ann. Inst. Henri Poincaré Anal. Non Linéaire 30 (2013) 1097–1126. | MR | Zbl | Numdam | DOI
[22] , and , Optimal shape and location of sensors for parabolic equations with random initial data. Arch. Ratl. Mech. Anal. 216 (2015) 921–981. | MR | DOI
[23] , and , Actuator design for parabolic distributed parameter systems with the moment method. SIAM J. Control Optim. 55 (2017) 1128–1152. | MR | DOI
[24] and , Uniform boundary stabilization of the finite difference space discretization of the 1-d wave equation. Adv. Comput. Math. 26 (2007) 337–365. | MR | Zbl | DOI
[25] , and , Steady-state and periodic exponential turnpike property for optimal control problems in Hilbert spaces. SIAM J. Control Optim. 56 (2018) 1222–1252. | MR | DOI
[26] , Contrôlabilité exacte d’un modèle de plaques vibrantes en un temps arbitrairement petit. C. R. Acad. Sci. Paris Sér. I Math. 304 (1987) 173–176. | MR | Zbl
[27] , Decay estimates for some semilinear damped hyperbolic problems. Asymptotic Anal. 1 (1988) 161–185.
[28] , Exact controllability for semilinear wave equations in one space dimension. Ann. Inst. Henri Poincaré Anal. Non Linéaire 10 (1993) 109–129. | MR | Zbl | Numdam | DOI
[29] , Boundary observability for the finite-difference space semi-discretizations of the 2-D wave equation in the square. J. Math. Pures Appl. (9) 78 (1999) 523–563. | MR | Zbl | DOI
[30] , Propagation, observation, and control of waves approximated by finite difference methods. SIAM Rev. 47 (2005) 197–243. | MR | Zbl | DOI
Cité par Sources :





