Null controllability and finite-time stabilization in minimal time of one-dimensional first-order 2 × 2 linear hyperbolic systems
ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 96

The goal of this article is to present the minimal time needed for the null controllability and finite-time stabilization of one-dimensional first-order 2 × 2 linear hyperbolic systems. The main technical point is to show that we cannot obtain a better time. The proof combines the backstepping method with the Titchmarsh convolution theorem.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/cocv/2021091
Classification : 35L40, 93B05, 93D15, 45D05
Keywords: Hyperbolic systems, Boundary controllability, Minimal control time, Backstepping method, Titchmarsh convolution theorem
@article{COCV_2021__27_1_A98_0,
     author = {Hu, Long and Olive, Guillaume},
     title = {Null controllability and finite-time stabilization in minimal time of one-dimensional first-order 2 {\texttimes} 2 linear hyperbolic systems},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {27},
     doi = {10.1051/cocv/2021091},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/cocv/2021091/}
}
TY  - JOUR
AU  - Hu, Long
AU  - Olive, Guillaume
TI  - Null controllability and finite-time stabilization in minimal time of one-dimensional first-order 2 × 2 linear hyperbolic systems
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2021
VL  - 27
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/cocv/2021091/
DO  - 10.1051/cocv/2021091
LA  - en
ID  - COCV_2021__27_1_A98_0
ER  - 
%0 Journal Article
%A Hu, Long
%A Olive, Guillaume
%T Null controllability and finite-time stabilization in minimal time of one-dimensional first-order 2 × 2 linear hyperbolic systems
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2021
%V 27
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2021091/
%R 10.1051/cocv/2021091
%G en
%F COCV_2021__27_1_A98_0
Hu, Long; Olive, Guillaume. Null controllability and finite-time stabilization in minimal time of one-dimensional first-order 2 × 2 linear hyperbolic systems. ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 96. doi: 10.1051/cocv/2021091

[1] J. Auriol and F. Di Meglio Minimum time control of heterodirectional linear coupled hyperbolic PDEs. Autom. J. IFAC 71 (2016) 300–307.

[2] G. Bastin and J.-M. Coron, Stability and boundary stabilization of 1-D hyperbolic systems. Vol. 88 of Progress in Nonlinear Differential Equations and their Applications. Subseries in Control. Birkhäuser/Springer, [ Cham] (2016).

[3] P. Brunovský, A classification of linear controllable systems. Kybernetika (Prague) 6 (1970) 173–188.

[4] J.-M. Coron, G. Bastin and B. D’Andréa Novel Dissipative boundary conditions for one-dimensional nonlinear hyperbolic systems. SIAM J. Control Optim. 47 (2008) 1460–1498.

[5] J.-M. Coron, L. Hu and G. Olive, Finite-time boundary stabilization of general linear hyperbolic balance laws via Fredholm backstepping transformation. Automatica J. IFAC 84 (2017) 95–100.

[6] J.-M. Coron, L. Hu, G. Olive and P. Shang, Boundary stabilization in finite time of one-dimensional linear hyperbolic balance laws with coefficients depending on time and space. J. Differ. Equ. 271 (2021) 1109–1170.

[7] J.-M. Coron and H.-M. Nguyen, Optimal time for the controllability of linear hyperbolic systems in one-dimensional space. SIAM J. Control Optim. 57 (2019) 1127–1156.

[8] J.-M. Coron and H.-M. Nguyen, Finite-time stabilization in optimal time of homogeneous quasilinear hyperbolic systems in one dimensional space. ESAIM: COCV 26 (2020) 119.

[9] J.-M. Coron and H.-M. Nguyen, Lyapunov functions and finite time stabilization in optimal time for homogeneous linear and quasilinear hyperbolic systems. Preprint (2020). | arXiv

[10] J.-M. Coron and H.-M. Nguyen, Null-controllability of linear hyperbolic systems in one dimensional space. Syst. Control Lett. 148 (2021) 104851.

[11] J.-M. Coron, R. Vazquez, M. Krstic and G. Bastin, Local exponential H2 stabilization of a 2 × 2 quasilinear hyperbolic system using backstepping. SIAM J. Control Optim. 51 (2013) 2005–2035.

[12] F. Di Meglio, R. Vazquez and M. Krstic, Stabilization of a system of n + 1 coupled first-order hyperbolic linear PDEs with a single boundary input. IEEE Trans. Automat. Control 58 (2013) 3097–3111.

[13] J. M. Greenberg and T. T. Li, The effect of boundary damping for the quasilinear wave equation. J. Differ. Equ. 52 (1984) 66–75.

[14] P. Hartman, Ordinary differential equations. Vol. 38 of Classics in Applied Mathematics. Corrected reprint of thesecond 1982 edition [Birkhäuser, Boston, MA; MR0658490 (83e:34002)], With a foreword by Peter Bates. Society for Industrial and Applied Mathematics (SIAM). Philadelphia, PA (2002).

[15] H. Hochstadt, Integral equations. Pure and Applied Mathematics. John Wiley & Sons, New York-London-Sydney (1973).

[16] L. Hu, Sharp time estimates for exact boundary controllability of quasilinear hyperbolic systems. SIAM J. Control Optim. 53 (2015) 3383–3410.

[17] L. Hu and F. Di Meglio Finite-time backstepping boundary stabilization of 3 × 3 hyperbolic systems, in Proceedings of the European Control Conference (ECC) (July 2015) 67–72.

[18] L. Hu, F. Di Meglio, R. Vazquez and M. Krstic, Control of homodirectional and general heterodirectional linear coupled hyperbolic PDEs. IEEE Trans. Automat. Control 61 (2016) 3301–3314.

[19] L. Hu and G. Olive, Minimal time for the exact controllability of one-dimensional first-order linear hyperbolic systems by one-sidedboundary controls. J. Math. Pures Appl. 148 (2021) 24–74.

[20] L. Hu, R. Vazquez, F. Di Meglio and M. Krstic, Boundary exponential stabilization of 1-dimensional inhomogeneous quasi-linear hyperbolic systems. SIAM J. Control Optim. 57 (2019) 963–998.

[21] M. Krstic and A. Smyshlyaev, Boundary control of PDEs. A course on backstepping designs. Vol. 16 of Advances in Design and Control, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2008).

[22] T. Li, Controllability and observability for quasilinear hyperbolic systems. Vol. 3 of AIMS Series on Applied Mathematics. American Institute of Mathematical Sciences (AIMS), Springfield, MO; Higher Education Press, Beijing (2010).

[23] T. Li and B. Rao, Strong (weak) exact controllability and strong (weak) exact observability for quasilinear hyperbolic systems. Chin. Ann. Math. Ser. B 31 (2010) 723–742.

[24] T. T. Li, Global classical solutions for quasilinear hyperbolic systems. Vol. 32 of RAM: Research in Applied Mathematics. Masson, Paris; John Wiley & Sons, Ltd., Chichester (1994).

[25] J. Mikusiński, The Bochner integral. Lehrbücher und Monographien aus dem Gebiete der exakten Wissenschaften, Mathematische Reihe, Band 55. Birkhäuser Verlag, Basel-Stuttgart (1978).

[26] T. H. Qin, Global smooth solutions of dissipative boundary value problems for first order quasilinear hyperbolic systems. Chin. Ann. Math. Ser. B 6 (1985) 289–298. A Chinese summary appears in Chin. Ann. Math. Ser. A 6 (1985) 514.

[27] W. Rudin, Functional analysis, International Series in Pure and Applied Mathematics. McGraw-Hill, Inc., New York, second ed. (1991).

[28] D. L. Russell, Canonical forms and spectral determination for a class of hyperbolic distributed parameter control systems. J. Math. Anal. Appl. 62 (1978) 186–225.

[29] D. L. Russell, Controllability and stabilizability theory for linear partial differential equations: recent progress and open questions. SIAM Rev. 20 (1978) 639–739.

[30] E. C. Titchmarsh, The zeros of certain integral functions. Proc. London Math. Soc. 25 (1926) 283–302.

[31] N. Weck, A remark on controllability for symmetric hyperbolic systems in one space dimension. SIAM J. Control Optim. 20 (1982) 1–8.

Cité par Sources :