Finite-time stabilization of an overhead crane with a flexible cable submitted to an affine tension
ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 94

The paper is concerned with the finite-time stabilization of a coupled PDE–ODE system describing the motion of an overhead crane with a flexible cable. The dynamics of the flexible cable is described by the wave equation with a variable coefficient which is an affine function of the curvilinear abscissa along the cable. Using several changes of variables, a backstepping transformation, and a finite-time stable second-order ODE for the dynamics of a conveniently chosen variable, we prove that a global finite-time stabilization occurs for the full system constituted of the platform and the cable. The kernel equations and the finite-time stable ODE are numerically solved in order to compute the nonlinear feedback law, and numerical simulations validating our finite-time stabilization approach are presented.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/cocv/2021090
Classification : 93C20, 93D15
Keywords: Finite-time stability, PDE–ODE system, Volterra integral transformation, cascade systems, nonlinear feedback law, transparent boundary conditions, wave equation
@article{COCV_2021__27_1_A96_0,
     author = {Wijnand, Marc and d{\textquoteright}Andr\'ea-Novel, Brigitte and Rosier, Lionel},
     title = {Finite-time stabilization of an overhead crane with a flexible cable submitted to an affine tension},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {27},
     doi = {10.1051/cocv/2021090},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/cocv/2021090/}
}
TY  - JOUR
AU  - Wijnand, Marc
AU  - d’Andréa-Novel, Brigitte
AU  - Rosier, Lionel
TI  - Finite-time stabilization of an overhead crane with a flexible cable submitted to an affine tension
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2021
VL  - 27
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/cocv/2021090/
DO  - 10.1051/cocv/2021090
LA  - en
ID  - COCV_2021__27_1_A96_0
ER  - 
%0 Journal Article
%A Wijnand, Marc
%A d’Andréa-Novel, Brigitte
%A Rosier, Lionel
%T Finite-time stabilization of an overhead crane with a flexible cable submitted to an affine tension
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2021
%V 27
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2021090/
%R 10.1051/cocv/2021090
%G en
%F COCV_2021__27_1_A96_0
Wijnand, Marc; d’Andréa-Novel, Brigitte; Rosier, Lionel. Finite-time stabilization of an overhead crane with a flexible cable submitted to an affine tension. ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 94. doi: 10.1051/cocv/2021090

[1] B. D’Andréa-Novel, F. Boustany, F. Conrad and B. P. Rao, Feedback stabilization of a hybrid PDE-ODE system: application to an overhead crane. MCSS J. 7 (1994) 1–22.

[2] B. D’Andréa-Novel and J.-M. Coron, Exponential stabilization of an overhead crane with flexible cable via a back-stepping approach. Automatica 36 (2000) 587–593.

[3] B. D’Andréa-Novel and J.-M. Coron, Stabilization of an overhead crane with a variable length flexible cable. Comput. Appl. Math. 21 (2002) 101–134.

[4] B. D’Andréa-Novel, B. Fabre and J.-M. Coron, An acoustic model for automatic control of a slide flute. Acta Acustica united with Acustica 96 (2010) 713–721.

[5] B. D’Andréa-Novel, I. Moyano and L. Rosier, Finite-time stabilization of an overhead crane with a flexible cable. Math. Control Signals Syst. 31 (2019) 6.

[6] F. Alabau-Boussouira, V. Perrollaz and L. Rosier, Finite-time stabilization of a network of strings. Math. Control Related Fields 5 (2015) 721–742.

[7] H. Anfinsen and O. M. Aamo, Adaptative Control of Hyperbolic PDEs. Springer (2019).

[8] A. Bacciotti and L. Rosier, Liapunov Functions and Stability in Control Theory, 2nd edn, Springer-Verlag, Berlin, Heidelberg (2005).

[9] S. P. Bhat and D. S. Bernstein, Finite-time stability of continuous autonomous systems. SIAM J. Control Optim. 38 (2000) 751–766.

[10] J.-M. Coron, Control and Nonlinearity. Vol. 136 of Mathematical Surveys and Monographs. American Mathematical Society (2007).

[11] J.-M. Coron and B. D’Andréa-Novel, Stabilization of a rotating body-beam without damping. IEEE Trans. Automatic Control 43 (1998) 608–618.

[12] J.-M. Coron, R. Vazquez, M. Krstic and G. Bastin, Local exponential H2 stabilization of a 2 × 2 quasilinear hyperbolic system using backstepping. SIAM J. Control Optim. 51 (2013) 2005–2035.

[13] J. Daafouz, M. Tucsnak and J. Valein, Nonlinear control of a coupled PDE/ODE system modeling a switched power converter with a transmission line. Syst. Control Lett. 70 (2014) 92–99.

[14] M. Gugat, V. Perrollaz and L. Rosier, Boundary stabilization of quasilinear hyperbolic systems of balance laws: exponential decay for small source terms. J. Evol. Equ. 18 (2018) 1471–1500.

[15] V. T. Haimo, Finite time controllers. SIAM J. Control Optim. 24 (1986) 760–770.

[16] M. Krstic and A. Smyshlyaev, Boundary control of PDEs – A course on backstepping designs. SIAM (2008).

[17] G. Leugering and E. J. P. G. Schmidt, On the modelling and stabilization of flows in networks of open canals. SIAM J. Control Optim. 41 (2002) 164–180.

[18] A. Majda and R. Phillips, Disappearing solutions for the dissipative wave equations. Indiana Univ. Math. J. 24 (1975) 1119–1133.

[19] P. Martin, L. Rosier and P. Rouchon, Null controllability of one-dimensional parabolic equations by the flatness approach. SIAM J. Control Optim. 54 (2016) 198–220.

[20] A. Mattioni, Y. Wu, Y. Le Gorrec and H. Zwart, Stabilisation of a rotating beam clamped on a moving inertia with strong dissipation feedback, in Proceedings of the 59th IEEE Conference on Decision and Control, Jeju Island (2020) 5056–5061.

[21] A. Mifdal, Stabilisation uniforme d’un système hybride. C.R. Acad. Sci. Paris, t. 324, Série I (1997) 37–42.

[22] J. J. Moré, B. S. Garbow and K. E. Hillstrom, User guide for MINPACK-1. Argonne National Laboratory (1980).

[23] O. Morgül, B. P. Rao and F. Conrad, On the stabilization of a cable with a tip mass. IEEE Trans. Autom. Control 39 (1994) 440–454.

[24] V. Perrollaz and L. Rosier. Finite-time stabilization of 2 × 2 hyperbolic systems on tree-shaped networks. SIAM J. Control Optim. 52 (2014) 143–163.

[25] A. Polyakov, Fixed-time stabilization of linear systems via sliding mode control, in 2012 12th International Workshop on Variable Structure Systems, IEEE (2012) 1–6.

[26] A. Polyakov, Sliding mode control design using canonical homogeneous norm. Int. J. Robust Nonlinear Control 29 (2019) 682–701.

[27] A. Polyakov, D. Efimov and B. Brogliato, Consistent discretization of finite-time and fixed-time stable systems. SIAM J. Control Optim. 57 (2019) 78–103.

[28] L. Sainsaulieu, Calcul scientifique. Masson (1996).

[29] R. Sepulchre, M. Janković and P. Kokotović, Constructive Nonlinear Control. Springer-Verlag (1997).

[30] Y. Shang, D. Liu and G. Xu, Super-stability and the spectrum of one-dimensional wave equations on general feedback controlled networks. IMA J. Math. Control Inform. 31 (2014) 73–90.

[31] N.-T. Trinh, V. Andrieu and C.-Z. Xu, Design of integral controllers for nonlinear systems governed by scalar hyperbolic partial differential equations. IEEE Trans. Autom. Control 62 (2017) 4527–4536.

[32] R. Vazquez and M. Krstic, Marcum Q-functions and explicit kernels for stabilization of 2 × 2 linear hyperbolic systems with constant coefficients. Syst. Control Lett. 68 (2014) 33–42.

Cité par Sources :