Stability estimate for the semi-discrete linearized Benjamin-Bona-Mahony equation
ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 93

In this work we study the semi-discrete linearized Benjamin-Bona-Mahony equation (BBM) which is a model for propagation of one-dimensional, unidirectional, small amplitude long waves in non-linear dispersive media. In particular, we derive a stability estimate which yields a unique continuation property. The proof is based on a Carleman estimate for a finite difference approximation of Laplace operator with boundary observation in which the large parameter is connected to the mesh size.

DOI : 10.1051/cocv/2021087
Classification : 35B60, 35L05, 35Q35, 35R45, 65M06
Keywords: Benjamin-Bona-Mahony equation, unique continuation property, Carleman estimate discrete Carleman inequalities, dispersive equations, water wave equation, finite difference method, semi-discrete equations
@article{COCV_2021__27_1_A95_0,
     author = {Lecaros, Rodrigo and Ortega, Jaime H. and P\'erez, Ariel},
     editor = {Buttazzo, G. and Casas, E. and de Teresa, L. and Glowinski, R. and Leugering, G. and Tr\'elat, E. and Zhang, X.},
     title = {Stability estimate for the semi-discrete linearized {Benjamin-Bona-Mahony} equation},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {27},
     doi = {10.1051/cocv/2021087},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/cocv/2021087/}
}
TY  - JOUR
AU  - Lecaros, Rodrigo
AU  - Ortega, Jaime H.
AU  - Pérez, Ariel
ED  - Buttazzo, G.
ED  - Casas, E.
ED  - de Teresa, L.
ED  - Glowinski, R.
ED  - Leugering, G.
ED  - Trélat, E.
ED  - Zhang, X.
TI  - Stability estimate for the semi-discrete linearized Benjamin-Bona-Mahony equation
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2021
VL  - 27
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/cocv/2021087/
DO  - 10.1051/cocv/2021087
LA  - en
ID  - COCV_2021__27_1_A95_0
ER  - 
%0 Journal Article
%A Lecaros, Rodrigo
%A Ortega, Jaime H.
%A Pérez, Ariel
%E Buttazzo, G.
%E Casas, E.
%E de Teresa, L.
%E Glowinski, R.
%E Leugering, G.
%E Trélat, E.
%E Zhang, X.
%T Stability estimate for the semi-discrete linearized Benjamin-Bona-Mahony equation
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2021
%V 27
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2021087/
%R 10.1051/cocv/2021087
%G en
%F COCV_2021__27_1_A95_0
Lecaros, Rodrigo; Ortega, Jaime H.; Pérez, Ariel. Stability estimate for the semi-discrete linearized Benjamin-Bona-Mahony equation. ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 93. doi: 10.1051/cocv/2021087

[1] L. Baudouin and S. Ervedoza, Convergence of an inverse problem for a 1-D discrete wave equation. SIAM J. Control Optim. 51 (2013) 556–598.

[2] T. B. Benjamin, J. L. Bona and J. J. Mahony, Model equations for long waves in nonlinear dispersive systems. Philos. Trans. Roy. Soc. London Ser. A 272 (1972) 47–78.

[3] F. Boyer, F. Hubert and J. Le Rousseau Discrete Carleman estimates for elliptic operators and uniform controllability of semi-discretized parabolic equations. J. Math. Pures Appl. 93 (2010) 240–276.

[4] F. Boyer and J. Le Rousseau Carleman estimates for semi-discrete parabolic operators and application to the controllability of semi-linear semi-discrete parabolic equations. Ann. Inst. Henri Poincaré Anal. Non Linéaire 31 (2014) 1035–1078.

[5] T. Carleman, Sur un problème d’unicité pur les systèmes d’équations aux dérivées partielles à deux variables indépendantes. Ark. Mat., Astr. Fys. 26 (1939) 9.

[6] P. L. Da Silva and I. L. Freire, A geometrical demonstration for continuation of solutions of the generalised BBM equation. Monatshefte für Mathematik 194 (2021) 495–502.

[7] S. Ervedoza and F. De Gournay Uniform stability estimates for the discrete Calderón problems. Inverse Probl. 27 (2011) 125012.

[8] X. Fu, Q. Lü and X. Zhang, Carleman estimates for second order partial differential operators and applications. SpringerBriefs in Mathematics. Springer, Cham (2019). A unified approach, BCAM SpringerBriefs.

[9] A. V. Fursikov and O. Y. Imanuvilov, Controllability of evolution equations. Vol. 34 of Lecture Notes Series. Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul (1996).

[10] V. Hernández-Santamaría and P. González Casanova Carleman estimates and controllability results for fully-discrete approximations of 1-d parabolic equations. Preprint (2020). | arXiv

[11] V. Isakov, Inverse source problems. Vol. 34 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI (1990).

[12] S. Micu, On the controllability of the linearized Benjamin-Bona-Mahony equation. SIAM J. Control Optim. 39 (2001) 1677–1696.

[13] T. N. T. Nguyen, Carleman estimates for semi-discrete parabolic operators with a discontinuous diffusion coefficient and applications to controllability. Math. Control Relat. Fields 4 (2014) 203–259.

[14] L. Rosier and B.-Y. Zhang, Unique continuation property and control for the Benjamin-Bona-Mahony equation on a periodic domain. J. Differ. Equ. 254 (2013) 141–178.

[15] M. Yamamoto, One unique continuation for a linearized Benjamin-Bona-Mahony equation. J. Inverse Ill-Posed Probl. 11 (2003) 537–543.

[16] X. Zhang and E. Zuazua, Unique continuation for the linearized Benjamin-Bona-Mahony equation with space-dependent potential. Math. Ann. 325 (2003) 543–582.

[17] C. Zheng, Inverse problems for the fourth order Schrödinger equation on a finite domain. Math. Control Relat. Fields 5 (2015) 177–189.

[18] E. Zuazua, Propagation, observation, and control of waves approximated by finite difference methods. SIAM Rev. 47 (2005) 197–243.

Cité par Sources :

This work is dedicated to Prof. Enrique Zuazua. Dear Enrique, thanks for these years of friendship and for your valuable contributions to the study of control and partial differential equations, and also, for the formation of several generations of researchers in Latin America.

A. Pérez was founded by the National Agency for Research and Development (ANID)/Scholarship Program/ Doctorado Nacional Chile/2017 – 21170495. R. Lecaros was partially supported by FONDECYT(Chile) Grant 11180874. J.H. Ortega was partially supported by Centro de Modelamiento Matemático (AFB170001) and FONDECYT(Chile) Grant 1201125.