Inverse potential problems in divergence form for measures in the plane
ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 87

We study inverse potential problems with source term the divergence of some unknown (ℝ3-valued) measure supported in a plane; e.g., inverse magnetization problems for thin plates. We investigate methods for recovering a magnetization $$ by penalizing the measure-theoretic total variation norm ∥$$$$, and appealing to the decomposition of divergence-free measures in the plane as superpositions of unit tangent vector fields on rectifiable Jordan curves. In particular, we prove for magnetizations supported in a plane that TV -regularization schemes always have a unique minimizer, even in the presence of noise. It is further shown that TV -norm minimization (among magnetizations generating the same field) uniquely recovers planar magnetizations in the following two cases: (i) when the magnetization is carried by a collection of sufficiently separated line segments and a set that is purely 1-unrectifiable; (ii) when a superset of the support is tree-like. We note that such magnetizations can be recovered via TV -regularization schemes in the zero noise limit by taking the regularization parameter to zero. This suggests definitions of sparsity in the present infinite dimensional context, that generate results akin to compressed sensing.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/cocv/2021082
Classification : 31B20, 49N45, 49Q20, 86A22
Keywords: Planar divergence free measures, purely 1-unrectifiable sets, inverse potential problems in divergence form, thin plate magnetizations, Sparse recovery, total variation regularization
@article{COCV_2021__27_1_A89_0,
     author = {Baratchart, Laurent and Villalobos Guill\'en, Crist\'obal and Hardin, Douglas P.},
     title = {Inverse potential problems in divergence form for measures in the plane},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {27},
     doi = {10.1051/cocv/2021082},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/cocv/2021082/}
}
TY  - JOUR
AU  - Baratchart, Laurent
AU  - Villalobos Guillén, Cristóbal
AU  - Hardin, Douglas P.
TI  - Inverse potential problems in divergence form for measures in the plane
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2021
VL  - 27
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/cocv/2021082/
DO  - 10.1051/cocv/2021082
LA  - en
ID  - COCV_2021__27_1_A89_0
ER  - 
%0 Journal Article
%A Baratchart, Laurent
%A Villalobos Guillén, Cristóbal
%A Hardin, Douglas P.
%T Inverse potential problems in divergence form for measures in the plane
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2021
%V 27
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2021082/
%R 10.1051/cocv/2021082
%G en
%F COCV_2021__27_1_A89_0
Baratchart, Laurent; Villalobos Guillén, Cristóbal; Hardin, Douglas P. Inverse potential problems in divergence form for measures in the plane. ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 87. doi: 10.1051/cocv/2021082

[1] L. Ambrosio, V. Caselles, S. Masnou and J.-M. Morel, Connected components of sets of finite perimeter and applications to image processing. J. Eur. Math. Soc. (JEMS) 3 (2001) 39–92.

[2] L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs. Oxford University Press (2000).

[3] T. M. Apostol, Mathematical analysis; a modern approach to advanced calculus. Addison-Wesley Pub. Co., Reading, Mass. (1957).

[4] H. Attouch, G. Buttazzo and G. Michaille, Variational analysis in Sobolev and BV spaces. Vol. 6 of MPS/SIAM Series on Optimization, Society for Industrial and Applied Mathematics (SIAM). Applications to PDEs and optimization. Mathematical Programming Society (MPS), Philadelphia, PA (2006).

[5] L. Baratchart, D. Hardin, E. Lima, E. Saff and B. Weiss, Characterizing kernels of operators related to thin-plate magnetizations via generalizations of Hodge decompositions. Inverse Probl. 29 (2013) 015004.

[6] L. Baratchart, D. Hardin and C. Villalobos-Guillén, Divergence-free measures in the plane and inverse potential problems in divergence form. Preprint (2020). | arXiv

[7] L. Baratchart, C. Villalobos Guillén, D. P. Hardin, M. C. Northington and E. B. Saff, Inverse potential problems for divergence of measures with total variation regularization. Foundations of Computational Mathematics (2019).

[8] P. Bonicatto and N. A. Gusev, On the structure of divergence-free measures on ℝ2. Preprint: (2019). | arXiv

[9] K. Bredies and M. Carioni, Sparsity of solutions for variational inverse problems with finite-dimensional data. Calc. Var. 59 (2020).

[10] K. Bredies and H. K. Pikkarainen, Inverse problems in spaces of measures. ESAIM: COCV 19 (2013) 190–218.

[11] M. Burger and S. Osher, Convergence rates of convex variational regularization. Inverse Probl. 20 (2004) 1411–1421.

[12] E. De Giorgi, Complementi alla teoria della misura (n − 1)-dimensionale in uno spazio n-dimensionale, Seminario di Matematica della Scuola Normale Superiore di Pisa, 1960-61, Editrice Tecnico Scientifica, Pisa (1961).

[13] E. De Giorgi, Frontiere orientate di misura minima, Seminario di Matematica della Scuola Normale Superiore di Pisa, 1960-61, Editrice Tecnico Scientifica, Pisa (1961).

[14] F. Demengel and G. Demengel, Functional spaces for the theory of elliptic partial differential equations. Translated fromthe 2007 French original by Reinie Erné. Universitext, Springer, London; EDP Sciences, Les Ulis (2012).

[15] L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions. CRC Press (2015).

[16] H. Federer, The Gauss-Green theorem. Trans. Am. Math. Soc. 58 (1945) 44–76.

[17] H. Federer, A note on the Gauss-Green theorem. Proc. Am. Math. Soc. 9 (1958) 447–451.

[18] H. Federer, Geometric measure theory. Die Grundlehren der mathematischen Wissenschaften, Band 153. Springer-Verlag New York Inc., New York (1969).

[19] S. Foucart and H. Rauhut, A Mathematical Introduction to Compressive Sensing. Birkhäuser (2013).

[20] C. Gerhards, On the unique reconstruction of induced spherical magnetizations. Inverse Probl. 32 (2015).

[21] B. Hoffmann, B. Kaltenbacher, C. Pöschl and O. Scherzer, A convergence rates result for Tikhonov regularization in Banach spaces with non-smooth operators. Inverse Probl. 23 (2007) 987–1010.

[22] J. D. Jackson, Classical electrodynamics, John Wiley & Sons, Inc., New York-London-Sydney (1975), second ed.

[23] J. R. Kirtley and J. P. Wikswo, Scanning squid microscopy. Annu. Rev. Mater. Sci. 29 (1999) 117–148.

[24] E. A. Lima, B. P. Weiss, L. Baratchart, D. P. Hardin and E. B. Saff, Fast inversion of magnetic field maps of unidirectional planar geological magnetization. J. Geophys Res. 118 (2013) 2723–2752.

[25] P. Mattila, Geometry of sets and measures in Euclidean spaces. Fractals and rectifiability. Vol. 44 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (1995).

[26] W. Rudin, Real and Complex Analysis. Mc Graw-Hill (1986).

[27] L. Schwartz, Théorie des distributions. Tome I, Actualités Sci. Ind., no. 1091 = Publ. Inst. Math. Univ. Strasbourg 9, Hermann & Cie., Paris (1950).

[28] S. K. Smirnov, Decomposition of solenoidal vector charges into elementary solenoids, and the structure of normal one-dimensional flows. St. Petersburg Math. J. 5 (1994) 841–867.

[29] C. Villalobos Guillén A Measure Theoretic Approach for the Recovery of Remanent Magnetizations. Ph.D. thesis, Vanderbilt University (2019).

[30] B. P. Weiss, E. A. Lima, L. E. Fong and F. J. Baudenbacher, Paleomagnetic analysis using squid microscopy. J. Geophys Res. 112 (2007).

[31] W. P. Ziemer, Weakly differentiable functions. Vol. 120 of Graduate Texts in Mathematics. Sobolev spaces and functions of bounded variation. Springer-Verlag, New York (1989).

Cité par Sources :

The research of the third author was supported, in part, by the U. S. National Science Foundation under grant DMS-1521749.

The research of the second author was supported, in part, by a grant from the Fondation mathématique Jacques Hadamard.