Diffeomorphic approximation of planar Sobolev homeomorphisms in rearrangement invariant spaces
ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 90

Let Ω ⊆ ℝ2 be a domain, let X be a rearrangement invariant space and let fW1 X (Ω, ℝ2) be a homeomorphism between Ω and f(Ω). Then there exists a sequence of diffeomorphisms f$$ converging to f in the space W1X (Ω, ℝ2).

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/cocv/2021080
Classification : 46E35
Keywords: Homeomorphic approximation, non-linear elasticity, rearrangement invariant spaces
@article{COCV_2021__27_1_A92_0,
     author = {Campbell, Daniel and Greco, Luigi and Schiattarella, Roberta and Soudsk\'y, Filip},
     title = {Diffeomorphic approximation of planar {Sobolev} homeomorphisms in rearrangement invariant spaces},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {27},
     doi = {10.1051/cocv/2021080},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/cocv/2021080/}
}
TY  - JOUR
AU  - Campbell, Daniel
AU  - Greco, Luigi
AU  - Schiattarella, Roberta
AU  - Soudský, Filip
TI  - Diffeomorphic approximation of planar Sobolev homeomorphisms in rearrangement invariant spaces
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2021
VL  - 27
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/cocv/2021080/
DO  - 10.1051/cocv/2021080
LA  - en
ID  - COCV_2021__27_1_A92_0
ER  - 
%0 Journal Article
%A Campbell, Daniel
%A Greco, Luigi
%A Schiattarella, Roberta
%A Soudský, Filip
%T Diffeomorphic approximation of planar Sobolev homeomorphisms in rearrangement invariant spaces
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2021
%V 27
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2021080/
%R 10.1051/cocv/2021080
%G en
%F COCV_2021__27_1_A92_0
Campbell, Daniel; Greco, Luigi; Schiattarella, Roberta; Soudský, Filip. Diffeomorphic approximation of planar Sobolev homeomorphisms in rearrangement invariant spaces. ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 90. doi: 10.1051/cocv/2021080

[1] J. M. Ball, Singularities and computation of minimizers for variational problems. Foundations of computational mathematics. London Math. Soc. Lecture Note Ser., 284, Cambridge Univ. Press, Cambridge (2001) 1–20.

[2] J. M. Ball, Progress and puzzles in Nonlinear Elasticity. Poly-, Quasi- and Rank-One Convexity in Applied Mechanics. Springer (2010).

[3] C. Bennet and R. Sharpley, Interpolation of Operators. Academic Press (1988) 129.

[4] D. Campbell, Diffeomorphic approximation of Planar Sobolev Homeomorphisms in Orlicz-Sobolev spaces. J. Funct. Anal. 273 (2017) 125–205.

[5] P. Cavaliere, A. Cianchi, L. Pick and L. Slavíková, Norms supporting the Lebesgue differentiation theorem. Commun. Contemp. Math. 20 (2018) 1–33.

[6] G. De Philippis and A. Pratelli, The closure of planar diffeomorphisms in Sobolev spaces. Ann. Inst. H. Poincaré Anal. Non Lin eaire 37 (2020) 181–224.

[7] S. Hencl and P. Koskela, Lectures on Mappings of finite distortion. Vol. 2096 of: Lecture Notes in Mathematics, Springer (2014).

[8] S. Hencl and A. Pratelli, Diffeomorphic approximation of W1,1 planar Sobolev homeomorphisms. J. Eur. Math. Soc. (JEMS) 20 (2018) 597–656.

[9] T. Iwaniec, L. V. Kovalev and J. Onninen, Diffeomorphic Approximation of Sobolev Homeomorphisms. Arch. Ratl. Mech. Anal. 201 (2011) 1047–1067.

[10] T. Iwaniec, L. V. Kovalev and J. Onninen, Hopf Differentials and Smoothing Sobolev Homeomorphisms. Int. Math. Res. Notices 14 (2012) 3256–3277.

[11] C. Mora-Corral and A. Pratelli, Approximation of piece-wise Affine Homeomorphisms by Diffeomorphisms. J. Geom. Anal. 24 (2014) 1398–1424.

[12] A. Pratelli, On the bi-Sobolev planar homeomorphisms and their approximation. Nonlinear Anal. 154 (2017) 258–268.

[13] A. Pratelli and E. Radici, Approximation of planar BV homeomorphisms by diffeomorphisms. J. Funct. Anal. 276 (2019) 659–686.

[14] A. Pratelli and E. Radici, On the planar minimal BV extension problems. Rend. Lincei Mat. Appl. 29 (2018) 511–555.

[15] E. Radici, A planar Sobolev extension theorem for piece-wise linear homeomorphisms. Pacific J. Math. 239 (2016) 405–418.

Cité par Sources :