Let Ω ⊆ ℝ2 be a domain, let X be a rearrangement invariant space and let f ∈ W1 X (Ω, ℝ2) be a homeomorphism between Ω and f(Ω). Then there exists a sequence of diffeomorphisms f$$ converging to f in the space W1X (Ω, ℝ2).
Accepté le :
Première publication :
Publié le :
Keywords: Homeomorphic approximation, non-linear elasticity, rearrangement invariant spaces
@article{COCV_2021__27_1_A92_0,
author = {Campbell, Daniel and Greco, Luigi and Schiattarella, Roberta and Soudsk\'y, Filip},
title = {Diffeomorphic approximation of planar {Sobolev} homeomorphisms in rearrangement invariant spaces},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
year = {2021},
publisher = {EDP-Sciences},
volume = {27},
doi = {10.1051/cocv/2021080},
language = {en},
url = {https://www.numdam.org/articles/10.1051/cocv/2021080/}
}
TY - JOUR AU - Campbell, Daniel AU - Greco, Luigi AU - Schiattarella, Roberta AU - Soudský, Filip TI - Diffeomorphic approximation of planar Sobolev homeomorphisms in rearrangement invariant spaces JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2021 VL - 27 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/cocv/2021080/ DO - 10.1051/cocv/2021080 LA - en ID - COCV_2021__27_1_A92_0 ER -
%0 Journal Article %A Campbell, Daniel %A Greco, Luigi %A Schiattarella, Roberta %A Soudský, Filip %T Diffeomorphic approximation of planar Sobolev homeomorphisms in rearrangement invariant spaces %J ESAIM: Control, Optimisation and Calculus of Variations %D 2021 %V 27 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/cocv/2021080/ %R 10.1051/cocv/2021080 %G en %F COCV_2021__27_1_A92_0
Campbell, Daniel; Greco, Luigi; Schiattarella, Roberta; Soudský, Filip. Diffeomorphic approximation of planar Sobolev homeomorphisms in rearrangement invariant spaces. ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 90. doi: 10.1051/cocv/2021080
[1] , Singularities and computation of minimizers for variational problems. Foundations of computational mathematics. London Math. Soc. Lecture Note Ser., 284, Cambridge Univ. Press, Cambridge (2001) 1–20.
[2] , Progress and puzzles in Nonlinear Elasticity. Poly-, Quasi- and Rank-One Convexity in Applied Mechanics. Springer (2010).
[3] and , Interpolation of Operators. Academic Press (1988) 129.
[4] , Diffeomorphic approximation of Planar Sobolev Homeomorphisms in Orlicz-Sobolev spaces. J. Funct. Anal. 273 (2017) 125–205.
[5] , , and , Norms supporting the Lebesgue differentiation theorem. Commun. Contemp. Math. 20 (2018) 1–33.
[6] and , The closure of planar diffeomorphisms in Sobolev spaces. Ann. Inst. H. Poincaré Anal. Non Lin eaire 37 (2020) 181–224.
[7] and , Lectures on Mappings of finite distortion. Vol. 2096 of: Lecture Notes in Mathematics, Springer (2014).
[8] and , Diffeomorphic approximation of W1,1 planar Sobolev homeomorphisms. J. Eur. Math. Soc. (JEMS) 20 (2018) 597–656.
[9] , and , Diffeomorphic Approximation of Sobolev Homeomorphisms. Arch. Ratl. Mech. Anal. 201 (2011) 1047–1067.
[10] , and , Hopf Differentials and Smoothing Sobolev Homeomorphisms. Int. Math. Res. Notices 14 (2012) 3256–3277.
[11] and , Approximation of piece-wise Affine Homeomorphisms by Diffeomorphisms. J. Geom. Anal. 24 (2014) 1398–1424.
[12] , On the bi-Sobolev planar homeomorphisms and their approximation. Nonlinear Anal. 154 (2017) 258–268.
[13] and , Approximation of planar BV homeomorphisms by diffeomorphisms. J. Funct. Anal. 276 (2019) 659–686.
[14] and , On the planar minimal BV extension problems. Rend. Lincei Mat. Appl. 29 (2018) 511–555.
[15] , A planar Sobolev extension theorem for piece-wise linear homeomorphisms. Pacific J. Math. 239 (2016) 405–418.
Cité par Sources :





