Long time behavior and turnpike solutions in mildly non-monotone mean field games
ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 86

We consider mean field game systems in time-horizon (0, T), where the individual cost functional depends locally on the density distribution of the agents, and the Hamiltonian is locally uniformly convex. We show that, even if the coupling cost functions are mildly non-monotone, then the system is still well posed due to the effect of individual noise. The rate of anti-monotonicity (i.e. the aggregation rate of the cost functions) which can be afforded depends on the intensity of the diffusion and on global bounds of solutions. We give applications to either the case of globally Lipschitz Hamiltonians or the case of quadratic Hamiltonians and couplings having mild growth. Under similar conditions, we investigate the long time behavior of solutions and we give a complete description of the ergodic and long term properties of the system. In particular we prove: (i) the turnpike property of solutions in the finite (long) horizon (0, T), (ii) the convergence of the system from (0, T) towards (0, ), (iii) the vanishing discount limit of the infinite horizon problem and the long time convergence towards the ergodic stationary solution. This way we extend previous results which were known only for the case of monotone and smoothing couplings; our approach is self-contained and does not need the use of the linearized system or of the master equation.

DOI : 10.1051/cocv/2021077
Classification : 49J20, 35B40
Keywords: Mean field games, turnpike property, long time behavior, ergodic limit
@article{COCV_2021__27_1_A88_0,
     author = {Cirant, Marco and Porretta, Alessio},
     editor = {Buttazzo, G. and Casas, E. and de Teresa, L. and Glowinski, R. and Leugering, G. and Tr\'elat, E. and Zhang, X.},
     title = {Long time behavior and turnpike solutions in mildly non-monotone mean field games},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {27},
     doi = {10.1051/cocv/2021077},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/cocv/2021077/}
}
TY  - JOUR
AU  - Cirant, Marco
AU  - Porretta, Alessio
ED  - Buttazzo, G.
ED  - Casas, E.
ED  - de Teresa, L.
ED  - Glowinski, R.
ED  - Leugering, G.
ED  - Trélat, E.
ED  - Zhang, X.
TI  - Long time behavior and turnpike solutions in mildly non-monotone mean field games
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2021
VL  - 27
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/cocv/2021077/
DO  - 10.1051/cocv/2021077
LA  - en
ID  - COCV_2021__27_1_A88_0
ER  - 
%0 Journal Article
%A Cirant, Marco
%A Porretta, Alessio
%E Buttazzo, G.
%E Casas, E.
%E de Teresa, L.
%E Glowinski, R.
%E Leugering, G.
%E Trélat, E.
%E Zhang, X.
%T Long time behavior and turnpike solutions in mildly non-monotone mean field games
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2021
%V 27
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2021077/
%R 10.1051/cocv/2021077
%G en
%F COCV_2021__27_1_A88_0
Cirant, Marco; Porretta, Alessio. Long time behavior and turnpike solutions in mildly non-monotone mean field games. ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 86. doi: 10.1051/cocv/2021077

[1] Y. Achdou and M. Laurière, Mean Field Games and Applications: Numerical Aspects, in Mean field games. Lectures Notes in Mathematics (CIME - series). Springer (2021).

[2] D. M. Ambrose, Existence theory for non-separable mean field games in Sobolev spaces. Preprint (2020). | arXiv

[3] P. Cardaliaguet, J.-M. Lasry, P.-L. Lions and A. Porretta, Long time average of mean field games. Netw. Heterogen. Media 7 (2012) 279–301.

[4] P. Cardaliaguet, J.-M. Lasry, P.-L. Lions and A. Porretta, Long time average of mean field games with a nonlocal coupling. SIAM J. Control Optim. 51 (2013) 3558–3591.

[5] P. Cardaliaguet and A. Porretta, Long time behavior of the master equation in mean field game theory. Anal. PDE 12 (2019) 1397–1453.

[6] P. Cardaliaguet and A. Porretta, An introduction to Mean Field Game theory, in Mean field games. Lectures Notes in Mathematics (CIME - series). Springer (2021).

[7] A. Cesaroni and M. Cirant, Brake orbits and heteroclinic connections for first order Mean Field Games. Trans. Am. Math. Soc. 374-7 (2021) 5037–5070.

[8] M. Cirant, Stationary focusing mean-field games. Commun. Partial Differ. Equ. 41 (2016) 1324–1346.

[9] M. Cirant, On the existence of oscillating solutions in non-monotone Mean-Field Games. J. Differ. Equ. 266-12 (2019) 8067–8093.

[10] M. Cirant and A. Goffi, On the problem of maximal L$$-regularity for viscous Hamilton-Jacobi equations. Preprint (2020). | arXiv

[11] M. Cirantand A. Goffi, Maximal $$. regularity for parabolic Hamilton-Jacobi equations and applications to Mean Field Games. Preprint (2020). | arXiv

[12] M. Cirant and D. Ghilli, Existence and non-existence for time-dependent mean field games with strong aggregation. Preprint (2020). | arXiv

[13] M. Cirant and D. Tonon, Time-dependent focusing mean-field games: the sub-critical case. J. Dyn. Differ. Equ. 31 (2019) 49–79.

[14] T. Damm, L. Grüne, M. Stielerz and K. Worthmann, An exponential turnpike theorem for dissipative discrete time optimal control problems. SIAM J. Control. Optim. 52 (2014) 1935–1957.

[15] R. Dorfman, P. A. Samuelson and R. Solow, Linear Programming and Economic Analysis. McGraw-Hill, New York (1958).

[16] D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order. Springer (2015).

[17] D. A. Gomes, J. Mohr and R. R. Souza, Discrete time, finite state space mean field games. J. Math. Pures Appl. 93 (2010) 308–328.

[18] D. Gomes and M. Sedjro, One-dimensional, forward–forward mean-field games with congestion. Discrete Contin. Dyn. Syst. Ser. S 11 (2018) 901–914.

[19] D. A. Gomes, E. A. Pimentel and V. Voskanyan, Regularity theory for mean-field game systems. Springer, Berlin (2016).

[20] M. Hieber and J. Prüss, Heat kernels and maximal Lp-Lq estimates for parabolic evolution equations. Commun. Partial Differ. Equ. 22 (1997) 1647–1669.

[21] M. Huang, P. Caines and R. Malhamé, Large population stochastic dynamic games: closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle. Commun. Inf. Syst. 6 (2006) 221–252.

[22] O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural’Ceva, Vol. 23 of Linear and quasi-linear equations of parabolic type. Translations of Mathematical Monographs. American Mathematical Society, Providence, R.I. (1967).

[23] O. A. Ladyzhenskaya and N. N. Ural’Ceva, Linear and quasilinear elliptic equations. Vol.46 of Mathematics in Science and Engineering. Academic Press, New York, London (1968).

[24] J.-M. Lasry and P.-L. Lions, Jeux à champ moyen. I –le cas stationnaire. Comp. Rendus Math. 343 (2006) 619–625.

[25] J.-M. Lasry and P.-L. Lions, Jeux à champ moyen. II –horizon fini et contrôle optimal. Compt. Rend. Math. 343 (2006) 679–684.

[26] J.-M. Lasry and P.-L. Lions, Mean field games. Jpn. J. Math. 2 (2007) 229–260.

[27] P.-L. Lions, Cours au college de france, 2007–2012.

[28] M. Masoero, On the long time convergence of potential MFG. Nonlinear Differ. Equ. Appl. 26 (2019) 15.

[29] A. Porretta, On the turnpike property in mean field games, Minimax Theory Appl. 3 (2018) 285–312.

[30] A. Porretta and E. Zuazua, Long time versus steady state optimal control. Siam J. Control Optim. 51 (2013) 4242–4273.

[31] H. V. Tran, A note on nonconvex mean field games. Minimax Theory Appl. 3 (2018) 323–336.

[32] E. Trélat and E. Zuazua, The turnpike property in finite-dimensional nonlinear optimal control. J. Differ. Equ. 258 (2015) 81–114.

[33] E. Zuazua, Large time control and turnpike properties for wave equations. Annu. Rev. Control 44 (2017) 199–210.

Cité par Sources :