On the uniform controllability for a family of non-viscous and viscous Burgers- α systems
ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 78

In this paper we study the global controllability of families of the so called non-viscous and viscous Burgers-α systems by using boundary and space independent distributed controls. In these equations, the usual convective velocity of the Burgers equation is replaced by a regularized velocity, induced by a Helmholtz filter of characteristic wavelength α. First, we prove a global exact controllability result (uniform with respect to α) for the non-viscous Burgers-α system, using the return method and a fixed-point argument. Then, the global uniform exact controllability to constant states is deduced for the viscous equations. To this purpose, we first prove a local exact controllability property and, then, we establish a global approximate controllability result for smooth initial and target states.

DOI : 10.1051/cocv/2021073
Classification : 93B05, 35Q35, 35G25
Keywords: Burgers-$$ system, global exact controllability, return method
@article{COCV_2021__27_1_A80_0,
     author = {Ara\'ujo, Raul K. C. and Fern\'andez-Cara, Enrique and Souza, Diego A.},
     title = {On the uniform controllability for a family of non-viscous and viscous {Burgers-}$\alpha$ systems},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {27},
     doi = {10.1051/cocv/2021073},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/cocv/2021073/}
}
TY  - JOUR
AU  - Araújo, Raul K. C.
AU  - Fernández-Cara, Enrique
AU  - Souza, Diego A.
TI  - On the uniform controllability for a family of non-viscous and viscous Burgers-$\alpha$ systems
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2021
VL  - 27
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/cocv/2021073/
DO  - 10.1051/cocv/2021073
LA  - en
ID  - COCV_2021__27_1_A80_0
ER  - 
%0 Journal Article
%A Araújo, Raul K. C.
%A Fernández-Cara, Enrique
%A Souza, Diego A.
%T On the uniform controllability for a family of non-viscous and viscous Burgers-$\alpha$ systems
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2021
%V 27
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2021073/
%R 10.1051/cocv/2021073
%G en
%F COCV_2021__27_1_A80_0
Araújo, Raul K. C.; Fernández-Cara, Enrique; Souza, Diego A. On the uniform controllability for a family of non-viscous and viscous Burgers-$\alpha$ systems. ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 78. doi: 10.1051/cocv/2021073

[1] F. D. Araruna, E. Fernández-Cara and D. A. Souza, On the control of the Burgers-alpha model. Adv. Differ. Equ. 18 (2013) 935–954.

[2] F. D. Araruna, E. Fernández-Cara and D. A. Souza, Uniform local null control of the Leray-α model. ESAIM: COCV 20 (2014) 1181–1202.

[3] C. Bardos and U. Frisch, Finite-time regularity for bounded and unbounded ideal incompressible fluids using Hölder estimates, Proceedings of the conference held at the university of Paris-Sud Orsay, France (1975)., Vol. 565 of Lectures Notes in Math. Springer-Verlag (1976) 1–13.

[4] A. L. Bertozzi, J. B. Garnett and T. Laurent, Characterization of radially symmetric finite time blowup in multidimensional aggregation equations. SIAM J. Math. Anal. 44 (2012) 651–681.

[5] H. S. Bhat and R. C. Fetecau, A Hamiltonian regularization of the Burgers equation. J. Nonlinear Sci. 16 (2006) 615–638.

[6] H. S. Bhat, R. C. Fetecau and J. A. Goodman, Leray-type regularization for the isentropic Euler equations. Nonlinearity 20 (2007) 2035–2046.

[7] H. S. Bhat and R. C. Fetecau, Stability of fronts for a regularization of the Burgers equation. Quart. Appl. Math. 66 (2008) 473–496.

[8] H. S. Bhat and R. C. Fetecau, The Riemann problem for the Leray-Burgers equation. J. Differ. Equ. 246 (2009) 3957–3979.

[9] H. S. Bhatand R. C. Fetecau, On a regularization of the compressible Euler equations for an isothermal gas. J. Math. Anal. Appl. 358 (2009) 168–181.

[10] R. Camassa and D. D. Holm, An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71 (1993) 1661–1664.

[11] M. Chapouly, Global controllability of nonviscous and viscous Burgers-type equations. SIAM J. Control Optim. 48 (2009) 1567–1599.

[12] A. Cheskidov, D. Holm, E. Olson and E. Titi, On a Leray-α model of turbulence. Proc. R. Soc. A 461 (2005) 629–649.

[13] G. M. Coclite, K. H. Karlsen and Y.-S. Kwon, Initial-boundary value problems for conservation laws with source terms and the Degasperis-Procesi equation. J. Funct. Anal. 257 (2009) 3823–3857.

[14] M. Colombo, G. Crippa and L. V. Spinolo, On the singular local limit for conservation laws with nonlocal fluxes. Arch. Ratl. Mech. Anal. 233 (2019) 1131–1167.

[15] J.-M. Coron, Global asymptotic stabilization for controllable systems without drift. Math. Control Signals Syst. 5 (1992) 295–312.

[16] J.-M. Coron, On the controllability of 2-D incompressible perfect fluids. J. Math. Pures Appl. 75 (1996) 155–188.

[17] J. M. Coron and S. Xiang, Small-time global stabilization of the viscous Burgers equation with three scalar controls. J. Math. Pures Appl. 151 (2021) 212–256.

[18] K. Craig and A. L. Bertozzi, A blob method for the aggregation equation. Math. Comp. 85 (2016) 1681–1717.

[19] A. Degasperis and M. Procesi, Asymptotic integrability, in Symmetry and Perturbation Theory, edited by A. Degasperis and G. Gaeta. World Scientific (1999) 23–37.

[20] J. I. Díaz, Obstruction and some approximate controllability results for the Burgers equation and related problems. Control of Partial Differential Equations and Applications. Vol. 174 of Lecture Notes in Pure and Appl. Math. Dekker, New York (1995) 63–76.

[21] C. I. Doering and A. O. Lopes, Equações diferenciais ordinárias, 5 ed., Coleção matemática universitária, IMPA (2014).

[22] A. Doubova, E. Fernández-Cara, M. González-Burgos and E. Zuazua, On the controllability of parabolic systems with a nonlinear term involving the state and the gradient. SIAM J. Control Optim. 41 (2002) 798–819.

[23] J. Escher and Z. Yin, Initial boundary value problems for nonlinear dispersive wave equations. J. Funct. Anal. 174 (2009) 479–508.

[24] L. Evans, Partial differential equations, 2 ed., Vol. 19 of Graduate Studies in Mathematics. American Mathematical Society, Providence (2010).

[25] C. Fabre, J.-P. Puel and E. Zuazua, Approximate controllability of the semilinear heat equation. Proc. Roy. Soc. Edinburgh Sect. A 125 (1995) 31–61.

[26] E. Fernández-Cara and S. Guerrero, Null controllability of the Burgers system with distributed controls. Syst. Control Lett. 56 (2007) 366–372.

[27] E. Fernández-Cara and D. A. Souza, Remarks on the control of a family of b–equations. Trends Control Theory Partial Differ. Equ. 32 (2019) 123–138.

[28] E. Fernández-Cara and E. Zuazua, Null and approximate controllability for weakly blowing up semilinear heat equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 17 5 (2000) 583–616.

[29] C. Foias, D. Holm and E. Titi, The three dimensional viscous Camassa-Holm equation and their relation to the Navier-Stokes equation and turbulence theory. J. Dyn. Differ. Equ. 14 (2002) 1–36.

[30] C. Foias, C. Manley, O. Rosa and R. Temam, Navier-Stokes equations and turbulence. Vol. 83 of Encyclopedia of Mathematics and its Applications. Cambridge University Press (2001).

[31] A. V. Fursikov and O. Y. Imanuvilov, Controllability of evolution equations. Vol. 34 of Lecture Notes. Seoul National University, Korea (1996).

[32] O. Glass, Exact boundary controllability of 3-D Euler equation. ESAIM: COCV 5 (2000) 1–44.

[33] O. Glass and S. Guerrero, On the uniform controllability of the Burgers equation. SIAM J. Control Optim. 46 (2007) 1211–1238.

[34] S. Guerrero and O. Y. Imanuvilov, Remarks on global controllability for the Burgers equation with two control forces. Ann. Inst. H. Poincaré Anal. Non Linéaire 24 (2007) 897–906.

[35] J. K. Hale, Ordinary differential equations, 2nd edn. Krieger Press, Florida (1980).

[36] P. Hartman, Ordinary differential equations. John Wiley & Sons (1964).

[37] D. Holm and M. Staley, Wave structure and nonlinear balances in a family of evolutionary PDEs. SIAM J. Appl. Dyn. Syst. 2 (2003) 323–380.

[38] T. Horsin, On the controllability of the Burgers equation. ESAIM: COCV 3 (1998) 83–95.

[39] J. Leray, Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math. 63 (1934) 193–248.

[40] J.-L. Lions and E. Magenes, Vol. 2 of Non-Homogeneous Boundary Value Problems and Applications, Translated from the French by P. Kenneth. Die Grundlehren der Mathematischen Wissenschaften, Springer-Verlag, New York–Heidelberg (1972).

[41] F. Marbach, Small time global null controllability for a viscous Burgers’ equation despite the presence of a boundary layer. J. Math. Pures Appl. 102 (2014) 364–384.

[42] G. Norgard and K. Mohseni, A regularization of the Burgers equation using a filtered convective velocity. J. Phys. A 41 (2008) 21.

[43] G. Norgard and K. Mohseni, On the convergence of the convectively filtered Burgers equation to the entropy solution of the inviscid Burgers equation. Multiscale Model. Simul. 7 (2009) 1811–1837.

[44] V. Perrollaz, Exact controllability of scalar conservation laws with an additional control in the context of entropy solutions. SIAM J. Control Optim. 50 (2012) 2025–2045.

[45] V. Perrollaz, Initial boundary value problem and asymptotic stabilization of the Camassa-Holm equation on an interval. J. Funct. Anal. 259 (2010) 2333–2365.

[46] C. Shen, On a regularization of a scalar conservation law with discontinuous coefficients. J. Math. Phys. 55 (2014) 15.

[47] J. Simon, Compact sets in the space L$$(0, T; B). Ann. Mat. Pura Appl. 146 (1987) 65–96.

Cité par Sources :