Second-order analysis of an optimal control problem in a phase field tumor growth model with singular potentials and chemotaxis
ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 73

This paper concerns a distributed optimal control problem for a tumor growth model of Cahn–Hilliard type including chemotaxis with possibly singular potentials, where the control and state variables are nonlinearly coupled. First, we discuss the weak well-posedness of the system under very general assumptions for the potentials, which may be singular and nonsmooth. Then, we establish the strong well-posedness of the system in a reduced setting, which however admits the logarithmic potential: this analysis will lay the foundation for the study of the corresponding optimal control problem. Concerning the optimization problem, we address the existence of minimizers and establish both first-order necessary and second-order sufficient conditions for optimality. The mathematically challenging second-order analysis is completely performed here, after showing that the solution mapping is twice continuously differentiable between suitable Banach spaces via the implicit function theorem. Then, we completely identify the second-order Fréchet derivative of the control-to-state operator and carry out a thorough and detailed investigation about the related properties.

DOI : 10.1051/cocv/2021072
Classification : 49J20, 49K20, 49K40, 35K57, 37N25
Keywords: Optimal control, tumor growth models, singular potentials, optimality conditions, second-order analysis
@article{COCV_2021__27_1_A75_0,
     author = {Colli, Pierluigi and Signori, Andrea and Sprekels, J\"urgen},
     title = {Second-order analysis of an optimal control problem in a phase field tumor growth model with singular potentials and chemotaxis},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {27},
     doi = {10.1051/cocv/2021072},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/cocv/2021072/}
}
TY  - JOUR
AU  - Colli, Pierluigi
AU  - Signori, Andrea
AU  - Sprekels, Jürgen
TI  - Second-order analysis of an optimal control problem in a phase field tumor growth model with singular potentials and chemotaxis
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2021
VL  - 27
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/cocv/2021072/
DO  - 10.1051/cocv/2021072
LA  - en
ID  - COCV_2021__27_1_A75_0
ER  - 
%0 Journal Article
%A Colli, Pierluigi
%A Signori, Andrea
%A Sprekels, Jürgen
%T Second-order analysis of an optimal control problem in a phase field tumor growth model with singular potentials and chemotaxis
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2021
%V 27
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2021072/
%R 10.1051/cocv/2021072
%G en
%F COCV_2021__27_1_A75_0
Colli, Pierluigi; Signori, Andrea; Sprekels, Jürgen. Second-order analysis of an optimal control problem in a phase field tumor growth model with singular potentials and chemotaxis. ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 73. doi: 10.1051/cocv/2021072

[1] V. Barbu, Nonlinear Differential Equations of Monotone Type in Banach Spaces. Springer, London, New York (2010).

[2] H. Brezis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. Vol. 5 of North-Holland Math. Stud. North-Holland, Amsterdam (1973).

[3] H. Cartan, Calcul différentiel. Formes différentielles. Hermann, Paris (1967).

[4] E. Casas and F. Tröltzsch, Second order analysis for optimal control problems: improving results expected from abstract theory. SIAM J. Optim. 22 (2012) 261–279.

[5] C. Cavaterra, E. Rocca and H. Wu, Long-time dynamics and optimal control of a diffuse interface model for tumor growth. Appl. Math. Optim. 83 (2021) 739–787.

[6] P. Colli, M. H. Farshbaf-Shaker, G. Gilardi and J. Sprekels, Second-order analysis of a boundary control problem for the viscous Cahn–Hilliard equation with dynamic boundary condition. Ann. Acad. Rom. Sci. Ser. Math. Appl. 7 (2015) 41–66.

[7] P. Colli, G. Gilardi and D. Hilhorst, On a Cahn–Hilliard type phase field system related to tumor growth. Discret. Cont. Dyn. Syst. 35 (2015) 2423–2442.

[8] P. Colli, G. Gilardi, E. Rocca and J. Sprekels, Vanishing viscosities and error estimate for a Cahn–Hilliard type phase field system related to tumor growth. Nonlinear Anal. Real World Appl. 26 (2015) 93–108.

[9] P. Colli, G. Gilardi, E. Rocca and J. Sprekels, Asymptotic analyses and error estimates for a Cahn–Hilliard type phase field system modelling tumor growth. Discret. Contin. Dyn. Syst. Ser. S 10 (2017) 37–54.

[10] P. Colli, G. Gilardi, E. Rocca and J. Sprekels, Optimal distributed control of a diffuse interface model of tumor growth. Nonlinearity 30 (2017) 2518–2546.

[11] P. Colli, G. Gilardi and J. Sprekels, A distributed control problem for a fractional tumor growth model. Mathematics 7 (2019) 792.

[12] P. Colli, A. Signori and J. Sprekels, Optimal control of a phase field system modelling tumor growth with chemotaxis and singular potentials, Appl. Math. Optim. 83 (2021) 2017–2049.

[13] V. Cristini, X. Li, J. S. Lowengrub and S. M. Wise, Nonlinear simulations of solid tumor growth using a mixture model: invasionand branching. J. Math. Biol. 58 (2009) 723–763.

[14] V. Cristini and J. Lowengrub, Multiscale Modeling of Cancer: An Integrated Experimental and Mathematical Modeling Approach. Cambridge University Press (2010).

[15] M. Dai, E. Feireisl, E. Rocca, G. Schimperna and M. E. Schonbek, Analysis of a diffuse interface model of multi-species tumor growth. Nonlinearity 30 (2017) 1639–1658.

[16] J. Dieudonné, Foundations of Modern Analysis. Vol. 10 of Pure and Applied Mathematics. Academic Press, New York (1960).

[17] M. Ebenbeck and P. Knopf, Optimal control theory and advanced optimality conditions for a diffuse interface model of tumor growth, ESAIM: COCV 26 (2020) 1–38.

[18] M. Ebenbeck and P. Knopf, Optimal medication for tumors modeled by a Cahn–Hilliard–Brinkman equation. Calc. Var. Partial Differ. Equ. 58 (2019) 131.

[19] M. Ebenbeck and H. Garcke, Analysis of a Cahn–Hilliard–Brinkman model for tumour growth with chemotaxis. J. Differ. Equ. 266 (2019) 5998–6036.

[20] S. Frigeri, M. Grasselli and E. Rocca, On a diffuse interface model of tumor growth, Eur. J. Appl. Math. 26 (2015) 215–243.

[21] S. Frigeri, K. F. Lam and E. Rocca, On a diffuse interface model for tumour growth with non-local interactions and degenerate mobilities, in Solvability, Regularity, and Optimal Control of Boundary Value Problems for PDEs, edited by P. Colli, A. Favini, E. Rocca, G. Schimperna, J. Sprekels. Vol. 22 of Springer INdAM Series. Springer, Cham (2017) 217–254.

[22] S. Frigeri, K. F. Lam, E. Rocca and G. Schimperna, On a multi-species Cahn–Hilliard–Darcy tumor growth model with singular potentials. Commun. Math Sci. 16 (2018) 821–856.

[23] S. Frigeri, K. F. Lam and A. Signori, Strong well-posedness and inverse identification problem of a non-local phase field tumor model with degenerate mobilities. Eur. J. Appl. Math. (2021) 1–42.

[24] H. Garcke and K. F. Lam, Well-posedness of a Cahn–Hilliard system modelling tumour growth with chemotaxis and active transport. Eur. J. Appl. Math. 28 (2017) 284–316.

[25] H. Garcke and K. F. Lam, Global weak solutions and asymptotic limits of a Cahn–Hilliard–Darcy system modelling tumour growth. AIMS Math. 1 (2016) 318–360.

[26] H. Garcke and K. F. Lam, Analysis of a Cahn–Hilliard system with non–zero Dirichlet conditions modeling tumor growth with chemotaxis, Discr. Contin. Dyn. Syst. 37 (2017) 4277–4308.

[27] H. Garcke and K. F. Lam, On a Cahn–Hilliard–Darcy system for tumour growth with solution dependent source terms, in Trends on Applications of Mathematics to Mechanics, edited by E. Rocca, U. Stefanelli, L. Truskinovski, A. Visintin. Vol. 27 of Springer INdAM Series. Springer, Cham (2018) 243–264.

[28] H. Garcke, K. F. Lam, R. Nürnberg and E. Sitka, A multiphase Cahn–Hilliard–Darcy model for tumour growth with necrosis. Math. Models Methods Appl. Sci. 28 (2018) 525–577.

[29] H. Garcke, K. F. Lam and E. Rocca, Optimal control of treatment time in a diffuse interface model of tumor growth. Appl. Math. Optim. 78 (2018) 495–544.

[30] H. Garcke, K. F. Lam, E. Sitka and V. Styles, A Cahn–Hilliard–Darcy model for tumour growth with chemotaxis and active transport. Math. Models Methods Appl. Sci. 26 (2016) 1095–1148.

[31] H. Garcke, K. F. Lam and A. Signori, On a phase field model of Cahn–Hilliard type for tumour growth with mechanical effects. Nonlinear Anal. Real World Appl. 57 (2021) 103192.

[32] D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, 2nd edn. Springer-Verlag, Berlin-Heidelberg (1983).

[33] A. Hawkins-Daarud, K. G. Van Der Zee and J. T. Oden, Numerical simulation of a thermodynamically consistent four-species tumor growth model, Int. J. Numer. Math. Biomed. Eng. 28 (2011) 3–24.

[34] D. Hilhorst, J. Kampmann, T. N. Nguyen and K. G. Van Der Zee, Formal asymptotic limit of a diffuse-interface tumor-growth model. Math. Models Methods Appl. Sci. 25 (2015) 1011–1043.

[35] C. Kahle and K. F. Lam, Parameter identification via optimal control for a Cahn–Hilliard-chemotaxis system with a variable mobility. Appl. Math. Optim. 82 (2020) 63–104.

[36] O. A. Ladyženskaja, V. A. Solonnikov and N. N. Uralceva, Linear and Quasilinear Equations of Parabolic Type. Vol. 23 of Mathematical Monographs. American Mathematical Society, Providence, Rhode Island (1968).

[37] J.-L. Lions, Équations différentielles opérationnelles et problèmes aux limites. Die Grundlehren der mathematischen Wissenschaften, Bd. 111. Springer-Verlag, Berlin-Göttingen-Heidelberg (1961).

[38] L. Scarpa and A. Signori, On a class of non-local phase-field models for tumor growth with possibly singular potentials, chemotaxis, and active transport. Nonlinearity 34 (2021) 3199–3250.

[39] A. Signori, Optimal distributed control of an extended model of tumor growth with logarithmic potential. Appl. Math. Optim. 82 (2020) 517–549.

[40] A. Signori, Optimality conditions for an extended tumor growth model with double obstacle potential via deep quench approach. Evol. Equ. Control Theory 9 (2020) 193–217.

[41] A. Signori, Optimal treatment for a phase field system of Cahn–Hilliard type modeling tumor growth by asymptotic scheme. Math. Control Relat. Fields 10 (2020) 305–331.

[42] A. Signori, Vanishing parameter for an optimal control problem modeling tumor growth. Asymptot. Anal. 117 (2020) 43–66.

[43] A. Signori, Penalisation of long treatment time and optimal control of a tumour growth model of Cahn–Hilliard type with singular potential. Discrete Contin. Dyn. Syst. 41 (2021) 2519–2542.

[44] J. Simon, Compact sets in the space L$$(0, T; B). Ann. Mat. Pura Appl. 146 (1987) 65–96.

[45] J. Sprekels and F. Tröltzsch, Sparse optimal control of a phase field system with singular potentials arising in the modeling of tumor growth. ESAIM: COCV 27 (2021) 2.

[46] J. Sprekels and H. Wu, Optimal distributed control of a Cahn–Hilliard–Darcy system with mass sources. Appl. Math. Optim. 83 (2021) 489–530.

[47] F. Tröltzsch, Optimal Control of Partial Differential Equations: Theory, Methods and Applications. Vol. 112 of Graduate Studies in Mathematics. American Mathematical Society, Providence, Rhode Island (2010).

[48] S. M. Wise, J. S. Lowengrub, H. B. Frieboes and V. Cristini, Three-dimensional multispecies nonlinear tumor growth I: Model and numerical method. J. Theor. Biol. 253 (2008) 524–543.

Cité par Sources :