Local null controllability of a fluid–rigid body interaction problem with Navier slip boundary conditions
ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 76

The aim of this work is to show the local null controllability of a fluid–solid interaction system by using a distributed control located in the fluid. The fluid is modeled by the incompressible Navier–Stokes system with Navier slip boundary conditions and the rigid body is governed by the Newton laws. Our main result yields that we can drive the velocities of the fluid and of the structure to 0 and we can control exactly the position of the rigid body. One important ingredient consists in a new Carleman estimate for a linear fluid–rigid body system with Navier boundary conditions. This work is done without imposing any geometrical conditions on the rigid body.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/cocv/2021071
Classification : 35Q30, 93C20, 93B05
Keywords: Navier–Stokes system, Navier slip boundary conditions, Null controllability, fluid–solid interaction system
@article{COCV_2021__27_1_A78_0,
     author = {Djebour, Imene Aicha},
     title = {Local null controllability of a fluid{\textendash}rigid body interaction problem with {Navier} slip boundary conditions},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {27},
     doi = {10.1051/cocv/2021071},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/cocv/2021071/}
}
TY  - JOUR
AU  - Djebour, Imene Aicha
TI  - Local null controllability of a fluid–rigid body interaction problem with Navier slip boundary conditions
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2021
VL  - 27
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/cocv/2021071/
DO  - 10.1051/cocv/2021071
LA  - en
ID  - COCV_2021__27_1_A78_0
ER  - 
%0 Journal Article
%A Djebour, Imene Aicha
%T Local null controllability of a fluid–rigid body interaction problem with Navier slip boundary conditions
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2021
%V 27
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2021071/
%R 10.1051/cocv/2021071
%G en
%F COCV_2021__27_1_A78_0
Djebour, Imene Aicha. Local null controllability of a fluid–rigid body interaction problem with Navier slip boundary conditions. ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 76. doi: 10.1051/cocv/2021071

[1] C. Amrouche and N. E. H. Seloula, L$$-theory for vector potentials and Sobolev’s inequalities for vector fields. C. R. Math. Acad. Sci. Paris 349 (2011) 529–534.

[2] M. Badra and T. Takahashi, Feedback stabilization of a fluid–rigid body interaction system. Adv. Differ. Equ. 19 (2014) 1137–1184.

[3] M. Badra and T. Takahashi, Feedback stabilization of a simplified 1d fluid-particle system. Ann. Inst. H. Poincaré Anal. Non Linéaire 31 (2014) 369–389.

[4] H. Beirão Da Veiga, Regularity for Stokes and generalized Stokes systems under nonhomogeneous slip-type boundary conditions. Adv. Differ. Equ. 9 (2004) 1079–1114.

[5] M. Boulakia and S. Guerrero, A regularity result for a solid-fluid system associated to the compressible Navier-Stokes equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 26 (2009) 777–813.

[6] M. Boulakia and S. Guerrero, Local null controllability of a fluid–solid interaction problem in dimension 3. J. Eur. Math. Soc. (JEMS) 15 (2013) 825–856.

[7] M. Boulakia and A. Osses, Local null controllability of a two-dimensional fluid-structure interaction problem. ESAIM: COCV 14 (2008) 1–42.

[8] D. Chae, O. Y. Imanuvilov and S. M. Kim, Exact controllability for semilinear parabolic equations with Neumann boundary conditions. J. Dynam. Control Syst. 2 (1996) 449–483.

[9] C. Conca, J. San Martín and M. Tucsnak, Existence of solutions for the equations modelling the motion of a rigid body in a viscous fluid. Commun. Partial Differ. Equ. 25 (2000) 1019–1042.

[10] J.-M. Coron and S. Guerrero, Null controllability of the N-dimensional Stokes system with N − 1 scalar controls. J. Differ. Equ. 246 (2009) 2908–2921.

[11] J.-M. Coron, F. Marbach and F. Sueur, Small-time global exact controllability of the Navier-Stokes equation with Navier slip-with-friction boundary conditions. J. Eur. Math. Soc. (JEMS) 22 (2020) 1625–1673.

[12] B. Desjardins and M.-J. Esteban, Existence of weak solutions for the motion of rigid bodies in a viscous fluid. Arch. Ration. Mech. Anal. 146 (1999) 59–71.

[13] B. Desjardins and M.-J. Esteban, On weak solutions for fluid–rigid structure interaction: compressible and incompressible models. Commun. Partial Differ. Equ. 25 (2000) 1399–1413.

[14] C. Fabre and G. Lebeau, Prolongement unique des solutions de l’equation de Stokes. Commun. Partial Differ. Equ. 21 (1996) 573–596.

[15] E. Fernández-Cara and S. Guerrero, Global Carleman inequalities for parabolic systems and applications to controllability. SIAM J. Control Optim. 45 (2006) 1399–1446.

[16] E. Fernández-Cara, S. Guerrero, O. Y. Imanuvilov and J.-P. Puel, Local exact controllability of the Navier-Stokes system. J. Math. Pures Appl. 83 (2004) 1501–1542.

[17] G. P. Galdi, An introduction to the mathematical theory of the Navier-Stokes equations. Steady-state problems. Springer Monographs in Mathematics, Springer, New York, second ed. (2011).

[18] D. Gérard-Varet and M. Hillairet, Existence of weak solutions up to collision for viscous fluid–solid systems with slip. Commun. Pure Appl. Math. 67 (2014) 2022–2075.

[19] D. Gérard-Varet, M. Hillairet and C. Wang, The influence of boundary conditions on the contact problem in a 3D Navier-Stokes flow. J. Math. Pures Appl. 103 (2015) 1–38.

[20] C. Grandmont and Y. Maday, Existence for an unsteady fluid-structure interaction problem. ESAIM: M2AN 34 (2000) 609–636.

[21] G. Grubb and V. A. Solonnikov, Reduction of basic initial-boundary value problems for the Stokes equation to initial-boundary value problems for parabolic systems of pseudodifferential equations. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 163 (1987) 37–48, 187.

[22] S. Guerrero, Local exact controllability to the trajectories of the Navier-Stokes system with nonlinear Navier-slip boundary conditions. ESAIM: COCV 12 (2006) 484–544.

[23] S. Guerrero and C. Montoya, Local null controllability of the N-dimensional Navier-Stokes system with nonlinear Navier-slip boundary conditions and N − 1 scalar controls. J. Math. Pures Appl. 113 (2018) 37–69.

[24] M. D. Gunzburger, H.-C. Lee, and G. A. Seregin, Global existence of weak solutions for viscous incompressible flows around a moving rigid body in three dimensions. J. Math. Fluid Mech. 2 (2000) 219–266.

[25] O. Y. Imanuvilov, Remarks on exact controllability for the Navier-Stokes equations. ESAIM: COCV 6 (2001) 39–72.

[26] O. Y. Imanuvilov and T. Takahashi, Exact controllability of a fluid–rigid body system. J. Math. Pures Appl. 87 (2007) 408–437.

[27] A. Roy and T. Takahashi, Local null controllability of a rigid body moving into a Boussinesq flow. Math. Control Relat. Fields 9 (2019) 793–836.

[28] J. A. San Martín, V. Starovoitov, and M. Tucsnak, Global weak solutions for the two-dimensional motion of several rigid bodies in an incompressible viscous fluid. Arch. Ratl. Mech. Anal. 161 (2002) 113–147.

[29] T. Takahashi, Analysis of strong solutions for the equations modeling the motion of a rigid-fluid system in a bounded domain. Adv. Differ. Equ. 8 (2003) 1499–1532.

[30] T. Takahashi and M. Tucsnak, Global strong solutions for the two-dimensional motion of an infinite cylinder in a viscous fluid. J. Math. Fluid Mech. 6 (2004) 53–77.

[31] C. Wang, Strong solutions for the fluid–solid systems in a 2-D domain. Asymptot. Anal. 89 (2014) 263–306.

Cité par Sources :