Uniform null controllability for parabolic equations with discontinuous diffusion coefficients
ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 66

In this article, we study the null-controllability of a heat equation in a domain composed of two media of different constant conductivities. In particular, we are interested in the behavior of the system when the conductivity of the medium on which the control does not act goes to infinity, corresponding at the limit to a perfectly conductive medium. In that case, and under suitable geometric conditions, we obtain a uniform null-controllability result. Our strategy is based on the analysis of the controllability of the corresponding wave operators and the transmutation technique, which explains the geometric conditions.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/cocv/2021063
Classification : 35K10, 35L10, 93B05, 93B07, 93B17
Keywords: Controllability, heat equation, observability, wave equation, transmutation technique
@article{COCV_2021__27_1_A68_0,
     author = {Dard\'e, J\'er\'emi and Ervedoza, Sylvain and Morales, Roberto},
     editor = {Buttazzo, G. and Casas, E. and de Teresa, L. and Glowinski, R. and Leugering, G. and Tr\'elat, E. and Zhang, X.},
     title = {Uniform null controllability for parabolic equations with discontinuous diffusion coefficients},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {27},
     doi = {10.1051/cocv/2021063},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/cocv/2021063/}
}
TY  - JOUR
AU  - Dardé, Jérémi
AU  - Ervedoza, Sylvain
AU  - Morales, Roberto
ED  - Buttazzo, G.
ED  - Casas, E.
ED  - de Teresa, L.
ED  - Glowinski, R.
ED  - Leugering, G.
ED  - Trélat, E.
ED  - Zhang, X.
TI  - Uniform null controllability for parabolic equations with discontinuous diffusion coefficients
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2021
VL  - 27
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/cocv/2021063/
DO  - 10.1051/cocv/2021063
LA  - en
ID  - COCV_2021__27_1_A68_0
ER  - 
%0 Journal Article
%A Dardé, Jérémi
%A Ervedoza, Sylvain
%A Morales, Roberto
%E Buttazzo, G.
%E Casas, E.
%E de Teresa, L.
%E Glowinski, R.
%E Leugering, G.
%E Trélat, E.
%E Zhang, X.
%T Uniform null controllability for parabolic equations with discontinuous diffusion coefficients
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2021
%V 27
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2021063/
%R 10.1051/cocv/2021063
%G en
%F COCV_2021__27_1_A68_0
Dardé, Jérémi; Ervedoza, Sylvain; Morales, Roberto. Uniform null controllability for parabolic equations with discontinuous diffusion coefficients. ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 66. doi: 10.1051/cocv/2021063

[1] G. Alessandrini and L. Escauriaza, Null-controllability of one-dimensional parabolic equations. ESAIM: COCV 14 (2008) 284–293.

[2] C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary. SIAM J. Control Optim. 30 (1992) 1024–1065.

[3] L. Baudouin and A. Mercado, An inverse problem for Schrödinger equations with discontinuous main coefficient. Appl. Anal. 87 (2008) 1145–1165.

[4] L. Baudouin, A. Mercado and A. Osses, A global Carleman estimate in a transmission wave equation and application to a one-measurement inverse problem. Inverse Prob. 23 (2007) 257.

[5] A. Benabdallah, Y. Dermenjian and J. Le Rousseau Carleman estimates for the one-dimensional heat equation with a discontinuous coefficient and applications to controllability and an inverse problem. J. Math. Anal. Appl. 336 (2007) 865–887.

[6] A. Benabdallah, Y. Dermenjian and J. Le Rousseau Carleman estimates for stratified media. J. Funct. Anal. 260 (2011) 3645–3677.

[7] A Benabdallah, Y. Dermenjian and L. Thevenet, Carleman estimates for some non-smooth anisotropic media. Commun. Partial Differ. Equ. 38 (2013) 1763–1790.

[8] F. Boyer, Controllability of linear parabolic equations and systems, Lecture (2020), . | HAL

[9] B. Dehman and S. Ervedoza, Observability estimates for the wave equation with rough coefficients. C. R. Math. Acad. Sci. Paris 355 (2017) 499–514.

[10] A. Doubova, A. Osses and J.-P. Puel, Vol. 8 of Exact controllability to trajectories for semilinear heat equations with discontinuous diffusion coefficients. A tribute to J. L. Lions (2002) 621–661.

[11] S. Ervedoza and E. Zuazua, Sharp observability estimates for heat equations. Arch. Ratl. Mech. Anal. 202 (2011) 975–1017.

[12] S. Ervedoza and E. Zuazua, Observability of heat processes by transmutation without geometric restrictions. Math. Control Relat. Fields 1 (2011) 177–187.

[13] L. C. Evans, Partial differential equations, Vol. 19 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI (1998).

[14] H. O. Fattorini and D. L. Russell, Exact controllability theorems for linear parabolic equations in one space dimension. Arch. Ratl. Mech. Anal. 43 (1971) 272–292.

[15] A. V. Fursikov and O. Y. Imanuvilov, Controllability of evolution equations. Vol. 34 of Lecture Notes Series. Seoul National University Research Institute of Mathematics Global Analysis Research Center, Seoul (1996).

[16] L. Gagnon, Sufficient conditions for the controllability of wave equations with a transmission condition at the interface. arXiv preprint (2017). | arXiv

[17] L. F. Ho, Observabilité frontière de l’équation des ondes. C. R. Acad. Sci. Paris Sér. I Math. 302 (1986) 443–446.

[18] A. Khoutaibi, Contrôlabilité à zéro d’une classe d’équations paraboliques linéaires et semi-linéaires avec des conditions aux limites dynamiques, Ph.D. Thesis, Univ. Cadi Ayyad (2020).

[19] J. Le Rousseau Carleman estimates and controllability results for the one-dimensional heat equation with BV coefficients. J. Differ. Equ. 233 (2007) 417–447.

[20] J. Le Rousseau and N. Lerner, Carleman estimates for anisotropic elliptic operators with jumps at an interface. Anal. PDE 6 (2013) 1601–1648.

[21] J. Le Rousseau and L. Robbiano, Carleman estimate for elliptic operators with coefficients with jumps at an interface in arbitrarydimension and application to the null controllability of linear parabolic equations. Arch. Ratl. Mech. Anal. 195 (2010) 953–990.

[22] J. Le Rousseau and L. Robbiano, Local and global Carleman estimates for parabolic operators with coefficients with jumps at interfaces. Invent. Math. 183 (2011) 245–336.

[23] G. Lebeau and L. Robbiano, Contrôle exact de l’équation de la chaleur. Comm. Partial Differ. Equ. 20 (1995) 335–356.

[24] J.-L. Lions, Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués. Tome 1, vol. 8 of Recherches en Mathématiques Appliquées. Contrôlabilité exacte, With appendices by E. Zuazua, C. Bardos, G. Lebeau and J. Rauch. Masson, Paris (1988).

[25] P. Martin, L. Rosier and P. Rouchon, Null controllability of one-dimensional parabolic equations by the flatness approach. SIAM J. Control Optim. 1 (2016) 198–220.

[26] L. Miller, Controllability cost of conservative systems: resolvent condition and transmutation. J. Funct. Anal. 218 (2005) 425–444.

[27] L. Miller, The control transmutation method and the cost of fast controls. SIAM J. Control Optim. 45 (2006) 762–772.

[28] J.-P. Raymond and M. Vanninathan, Null controllability in a heat-solid structure model. Appl. Math. Optim. 59 (2009) 247–273.

[29] D. L. Russell, A unified boundary controllability theory for hyperbolic and parabolic partial differential equations. Stud. Appl. Math. 52 (1973) 189–211.

[30] D. L. Russell, Controllability and stabilizability theory for linear partial differential equations: recent progress and open questions. SIAM Rev. 20 (1978) 639–739.

[31] M. Tucsnak and G. Weiss. Observation and control for operator semigroups, Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks]. Birkhäuser Verlag, Basel (2009).

[32] R. M. Young, An introduction to nonharmonic Fourier series, Academic Press Inc., San Diego, CA, first edition (2001).

[33] C. Zuily, Éléments de distributions et d’Équations aux dérivées Partielles. Dunod, Sciences Sup (2002).

Cité par Sources :

The second author has been supported by the Agence Nationale de la Recherche, Project IFSMACS, grant ANR-15-CE40-0010. The first and second authors have been supported by the CIMI Labex, Toulouse, France, under grant ANR-11-LABX-0040-CIMI and the MATH AmSud program ACIPDE. The third author has been supported by FONDECYT 3200830.