Numerical approximation of the averaged controllability for the wave equation with unknown velocity of propagation
ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 64

We propose a numerical method to approximate the exact averaged boundary control of a family of wave equations depending on an unknown parameter σ. More precisely the control, independent of σ, that drives an initial data to a family of final states at time t = T, whose average in σ is given. The idea is to project the control problem in the finite dimensional space generated by the first N eigenfunctions of the Laplace operator. When applied to a single (nonparametric) wave equation, the resulting discrete control problem turns out to be equivalent to the Galerkin approximation proposed by F. Bourquin et al. [C.R. Acad. Sci. Paris 313 I (1991) 757–760]. We give a convergence result of the discrete controls to the continuous one. The method is illustrated with several examples in 1-d and 2-d in a square domain and allows us to give some conjectures on the averaged controllability for the continuous problem.

DOI : 10.1051/cocv/2021060
Classification : 35L05, 65M70, 65K10
Keywords: Exact control, numerical approximation, averaged control, projection method
@article{COCV_2021__27_1_A66_0,
     author = {Abdelli, Mouna and Castro, Carlos},
     editor = {Buttazzo, G. and Casas, E. and de Teresa, L. and Glowinski, R. and Leugering, G. and Tr\'elat, E. and Zhang, X.},
     title = {Numerical approximation of the averaged controllability for the wave equation with unknown velocity of propagation},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {27},
     doi = {10.1051/cocv/2021060},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/cocv/2021060/}
}
TY  - JOUR
AU  - Abdelli, Mouna
AU  - Castro, Carlos
ED  - Buttazzo, G.
ED  - Casas, E.
ED  - de Teresa, L.
ED  - Glowinski, R.
ED  - Leugering, G.
ED  - Trélat, E.
ED  - Zhang, X.
TI  - Numerical approximation of the averaged controllability for the wave equation with unknown velocity of propagation
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2021
VL  - 27
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/cocv/2021060/
DO  - 10.1051/cocv/2021060
LA  - en
ID  - COCV_2021__27_1_A66_0
ER  - 
%0 Journal Article
%A Abdelli, Mouna
%A Castro, Carlos
%E Buttazzo, G.
%E Casas, E.
%E de Teresa, L.
%E Glowinski, R.
%E Leugering, G.
%E Trélat, E.
%E Zhang, X.
%T Numerical approximation of the averaged controllability for the wave equation with unknown velocity of propagation
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2021
%V 27
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2021060/
%R 10.1051/cocv/2021060
%G en
%F COCV_2021__27_1_A66_0
Abdelli, Mouna; Castro, Carlos. Numerical approximation of the averaged controllability for the wave equation with unknown velocity of propagation. ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 64. doi: 10.1051/cocv/2021060

[1] M. Abdelli, A. Hafdallah, F. Merghadi and M. Louafi, Regional averaged controllability for hyperbolic parameter dependent systems. Control Theory Tech. 18 (2020) 307–314.

[2] C. Bardos, F. Bourquin and G. Lebeau, Calcul de dérivées normales et méthode de Galerkin appliqué au problème de contrôllabilité exacte. C.R. Acad. Sci. Paris 313 I (1991) 757–760.

[3] F. Bourquin, A numerical approach to the exact controllability of Euler-Navier- Bernoulli beams, in Proceedings of the First World Conference on Structural Control, Pasadena (California) (1994) 120–129.

[4] F. Bourquin, Approximation theory for the problem of exact controllability of the wave equation with boundary control. In: Second International Conference on Mathematical and Numerical Aspects of Wave Propagation (Newark, DE, 1993). SIAM, Philadelphia (1993) 103–112.

[5] E. Burman, A. Feizmohammadi and L. Oksanen, A fully discrete numerical control method for the wave equation. SIAM J. Control Optim. 58 (2020) 1519–46.

[6] N. Cindea and A. Münch, A mixed formulation for the direct approximation of the control of minimal L2-norm for linear type wave equations. Calcolo 52 (2015) 245–288.

[7] N. Cindea, E. Fernandez-Cara and A. Münch, Numerical controllability of the wave equation through primal methods and Carleman estimates. ESAIM: COCV 19 (2013) 1076–1108.

[8] C. Castro, S. Micu, A. Münch, Numerical approximation of the boundary control for the wave equation with mixed finite elements in a square. IMA J. Numer. Anal. 28 (2008) 186–214.

[9] B. Dehman and G. Lebeau, Analysis of the HUM control operator and exact controllability for semilinear waves in uniform time. SIAM J. Control Optim. 48 (2009) 521–550.

[10] S. Ervedoza and E. Zuazua, The wave equation: control and numerics, in Control of Partial Differential Equations, edited by P. M. Cannarsa, J.-M. Coron. Lecture Notes in Mathematics, CIME Subseries. Springer, New York (2012) 245–340.

[11] S. Ervedoza and E. Zuazua, A systematic method for building smooth controls for smooth data. Discrete Contin. Dyn. Syst. Ser. B 14 (2010) 1375–1401.

[12] R. Glowinski, J.-L. Lions and J. He, Exact and approximate controllability for distributed parameter systems: a numerical approach. Vol. 117 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge (2008).

[13] R. Glowinski, C. H. Li and J.-L. Lions, A numerical approach to the exact boundary controllability of the wave equation (I). Dirichlet controls: Description of the numerical methods. Jpn. J. Appl. Math. 7 (1990) 1–76.

[14] M. Lazar and E. Zuazua, Averaged control and observation of parameter depending wave equations. C. R. Math. Acad. Sci. Paris 352 (2014) 497–502.

[15] J.-L. Lions, Contrôlabilité exacte, perturbations et stabilisation de systems distribués. Tome 1. Vol. 8 of Recherches en Mathématiques Appliquées [Research in Applied Mathematics]. With appendices by E. Zuazua, C. Bardos, G. Lebeau and J. Rauch. Masson, Paris (1988).

[16] J. Lohéac and E. Zuazua, Averaged controllability of parameter dependent conservative semigroups. J. Differ. Equ. 262 (2017) 1540–1574.

[17] J. Lohéac and E. Zuazua, From average to simultaneous controllability. Ann. Fac. Sci. Toulouse, Math. Ser. 6 25 (2016) 785–828.

[18] Q. Lü and E. Zuazua, Averaged controllability for random evolution partial differential equations. J. Math. Pures Appl. 105 (2016) 367–414.

[19] J. Martínez-Frutos and F. Periago Esparza Optimal control of PDEs under uncertainty. Springer Briefs in Mathematics (2018) DOI: . | DOI

[20] S. Micu and E. Zuazua, An introduction to the controllability of partial differential equations, in Quelques questions de théorie du contrôle, Collection Travaux en Cours, Hermann, edited by T. Sari (2005) 67–150.

[21] P. A. Raviart and J.-M. Thomas, Introduction à l’analyse numérique des équations aux derivées partielles. Dunond, Paris (1998).

[22] E. Zuazua, Stable observation of additive superpositions of partial differential equations. Syst. Control Lett. 93 (2016) 21–29.

[23] E. Zuazua, Propagation, observation, control and numerical approximation of waves. SIAM Rev. 47 (2005) 197–243.

[24] E. Zuazua, Averaged control. Automatica 50 (2014) 3077–3087.

Cité par Sources :