We propose a numerical method to approximate the exact averaged boundary control of a family of wave equations depending on an unknown parameter σ. More precisely the control, independent of σ, that drives an initial data to a family of final states at time t = T, whose average in σ is given. The idea is to project the control problem in the finite dimensional space generated by the first N eigenfunctions of the Laplace operator. When applied to a single (nonparametric) wave equation, the resulting discrete control problem turns out to be equivalent to the Galerkin approximation proposed by F. Bourquin et al. [C.R. Acad. Sci. Paris 313 I (1991) 757–760]. We give a convergence result of the discrete controls to the continuous one. The method is illustrated with several examples in 1-d and 2-d in a square domain and allows us to give some conjectures on the averaged controllability for the continuous problem.
Keywords: Exact control, numerical approximation, averaged control, projection method
@article{COCV_2021__27_1_A66_0,
author = {Abdelli, Mouna and Castro, Carlos},
editor = {Buttazzo, G. and Casas, E. and de Teresa, L. and Glowinski, R. and Leugering, G. and Tr\'elat, E. and Zhang, X.},
title = {Numerical approximation of the averaged controllability for the wave equation with unknown velocity of propagation},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
year = {2021},
publisher = {EDP-Sciences},
volume = {27},
doi = {10.1051/cocv/2021060},
language = {en},
url = {https://www.numdam.org/articles/10.1051/cocv/2021060/}
}
TY - JOUR AU - Abdelli, Mouna AU - Castro, Carlos ED - Buttazzo, G. ED - Casas, E. ED - de Teresa, L. ED - Glowinski, R. ED - Leugering, G. ED - Trélat, E. ED - Zhang, X. TI - Numerical approximation of the averaged controllability for the wave equation with unknown velocity of propagation JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2021 VL - 27 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/cocv/2021060/ DO - 10.1051/cocv/2021060 LA - en ID - COCV_2021__27_1_A66_0 ER -
%0 Journal Article %A Abdelli, Mouna %A Castro, Carlos %E Buttazzo, G. %E Casas, E. %E de Teresa, L. %E Glowinski, R. %E Leugering, G. %E Trélat, E. %E Zhang, X. %T Numerical approximation of the averaged controllability for the wave equation with unknown velocity of propagation %J ESAIM: Control, Optimisation and Calculus of Variations %D 2021 %V 27 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/cocv/2021060/ %R 10.1051/cocv/2021060 %G en %F COCV_2021__27_1_A66_0
Abdelli, Mouna; Castro, Carlos. Numerical approximation of the averaged controllability for the wave equation with unknown velocity of propagation. ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 64. doi: 10.1051/cocv/2021060
[1] , , and , Regional averaged controllability for hyperbolic parameter dependent systems. Control Theory Tech. 18 (2020) 307–314.
[2] , and , Calcul de dérivées normales et méthode de Galerkin appliqué au problème de contrôllabilité exacte. C.R. Acad. Sci. Paris 313 I (1991) 757–760.
[3] , A numerical approach to the exact controllability of Euler-Navier- Bernoulli beams, in Proceedings of the First World Conference on Structural Control, Pasadena (California) (1994) 120–129.
[4] , Approximation theory for the problem of exact controllability of the wave equation with boundary control. In: Second International Conference on Mathematical and Numerical Aspects of Wave Propagation (Newark, DE, 1993). SIAM, Philadelphia (1993) 103–112.
[5] , and , A fully discrete numerical control method for the wave equation. SIAM J. Control Optim. 58 (2020) 1519–46.
[6] and , A mixed formulation for the direct approximation of the control of minimal L2-norm for linear type wave equations. Calcolo 52 (2015) 245–288.
[7] , and , Numerical controllability of the wave equation through primal methods and Carleman estimates. ESAIM: COCV 19 (2013) 1076–1108.
[8] , , , Numerical approximation of the boundary control for the wave equation with mixed finite elements in a square. IMA J. Numer. Anal. 28 (2008) 186–214.
[9] and , Analysis of the HUM control operator and exact controllability for semilinear waves in uniform time. SIAM J. Control Optim. 48 (2009) 521–550.
[10] and , The wave equation: control and numerics, in Control of Partial Differential Equations, edited by , . Lecture Notes in Mathematics, CIME Subseries. Springer, New York (2012) 245–340.
[11] and , A systematic method for building smooth controls for smooth data. Discrete Contin. Dyn. Syst. Ser. B 14 (2010) 1375–1401.
[12] , and , Exact and approximate controllability for distributed parameter systems: a numerical approach. Vol. 117 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge (2008).
[13] , and , A numerical approach to the exact boundary controllability of the wave equation (I). Dirichlet controls: Description of the numerical methods. Jpn. J. Appl. Math. 7 (1990) 1–76.
[14] and , Averaged control and observation of parameter depending wave equations. C. R. Math. Acad. Sci. Paris 352 (2014) 497–502.
[15] , Contrôlabilité exacte, perturbations et stabilisation de systems distribués. Tome 1. Vol. 8 of Recherches en Mathématiques Appliquées [Research in Applied Mathematics]. With appendices by , , and . Masson, Paris (1988).
[16] and , Averaged controllability of parameter dependent conservative semigroups. J. Differ. Equ. 262 (2017) 1540–1574.
[17] and , From average to simultaneous controllability. Ann. Fac. Sci. Toulouse, Math. Ser. 6 25 (2016) 785–828.
[18] and , Averaged controllability for random evolution partial differential equations. J. Math. Pures Appl. 105 (2016) 367–414.
[19] and Optimal control of PDEs under uncertainty. Springer Briefs in Mathematics (2018) DOI: . | DOI
[20] and , An introduction to the controllability of partial differential equations, in Quelques questions de théorie du contrôle, Collection Travaux en Cours, Hermann, edited by (2005) 67–150.
[21] and , Introduction à l’analyse numérique des équations aux derivées partielles. Dunond, Paris (1998).
[22] , Stable observation of additive superpositions of partial differential equations. Syst. Control Lett. 93 (2016) 21–29.
[23] , Propagation, observation, control and numerical approximation of waves. SIAM Rev. 47 (2005) 197–243.
[24] , Averaged control. Automatica 50 (2014) 3077–3087.
Cité par Sources :





