Existence and uniqueness of solutions to the Navier-Stokes equations in dimension two with forces in the space L$$((0, T); W$$(Ω)) for p and q in appropriate parameter ranges are proven. The case of spatially measured-valued forces is included. For the associated Stokes equation the well-posedness results are verified in arbitrary dimensions for any 1 < p, q < ∞.
Accepté le :
Première publication :
Publié le :
Keywords: Evolution Navier-Stokes equations, weak solutions, uniqueness clasess, sensitivity analysis, asymptotic stability
@article{COCV_2021__27_1_A63_0,
author = {Casas, Eduardo and Kunisch, Karl},
editor = {Buttazzo, G. and Casas, E. and de Teresa, L. and Glowinski, R. and Leugering, G. and Tr\'elat, E. and Zhang, X.},
title = {Well-posedness of evolutionary {Navier-Stokes} equations with forces of low regularity on two-dimensional domains},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
year = {2021},
publisher = {EDP-Sciences},
volume = {27},
doi = {10.1051/cocv/2021058},
language = {en},
url = {https://www.numdam.org/articles/10.1051/cocv/2021058/}
}
TY - JOUR AU - Casas, Eduardo AU - Kunisch, Karl ED - Buttazzo, G. ED - Casas, E. ED - de Teresa, L. ED - Glowinski, R. ED - Leugering, G. ED - Trélat, E. ED - Zhang, X. TI - Well-posedness of evolutionary Navier-Stokes equations with forces of low regularity on two-dimensional domains JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2021 VL - 27 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/cocv/2021058/ DO - 10.1051/cocv/2021058 LA - en ID - COCV_2021__27_1_A63_0 ER -
%0 Journal Article %A Casas, Eduardo %A Kunisch, Karl %E Buttazzo, G. %E Casas, E. %E de Teresa, L. %E Glowinski, R. %E Leugering, G. %E Trélat, E. %E Zhang, X. %T Well-posedness of evolutionary Navier-Stokes equations with forces of low regularity on two-dimensional domains %J ESAIM: Control, Optimisation and Calculus of Variations %D 2021 %V 27 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/cocv/2021058/ %R 10.1051/cocv/2021058 %G en %F COCV_2021__27_1_A63_0
Casas, Eduardo; Kunisch, Karl. Well-posedness of evolutionary Navier-Stokes equations with forces of low regularity on two-dimensional domains. ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 61. doi: 10.1051/cocv/2021058
[1] , Linear and quasilinear parabolic problems. Vol. 1. Birkhäuser, Boston (1995).
[2] , Linear parabolic problems involving measures. Rev. R. Acad. Cien. Serie A. Mat. 95 (2001) 85–119.
[3] and , On the existence and regularity of the solution of Stokes problem in arbitrary dimension. Proc. Jpn. Acad. Ser. A Math. Sci. 67 (1991) 171–175.
[4] , , and , The square root problem for second-order, divergence form operators with mixed boundary conditions on L$$. J. Evol. Equ. 15 (2015) 165–208.
[5] and , Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models. Springer, New York (2013).
[6] , Functional analysis, Sobolev spaces and partial differential equations. Springer, New York (2011).
[7] and , Optimal control of the 2d stationary Navier-Stokes equations with measure valued controls. SIAM J. Control Optim. 57 (2019) 1328–1354.
[8] , Su un problema al contorno relativo al sistema di equazioni di Stokes. Rend. Mat. Semin. Univ. Padova 31 (1961) 308–340.
[9] , and , On maximal parabolic regularity for non-autonomous parabolic operators. J. Differ. Equ. 262 (2017) 2039–2072.
[10] , and , Very weak solutions and large uniqueness classes of stationary Navier-Stokes equations in bounded domains of ℝ2. J. Differ. Equ. 227 (2006) 564–580.
[11] , L$$-theory for characterizing the domain of the fractional powers of − Δ in the half space. J. Fac. Sci. Univ. Tokyo Sect. I 15 (1968) 169–177.
[12] , and , A class of solutions to stationary Stokes and Navier-Stokes equations with boundary data in W$$. Math. Ann. 331 (2005) 41–74.
[13] , An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Springer, New York (2011).
[14] , , , and , Maximal l$$-l$$-estimates for the Stokes equation: a short proof of Solonnikov’s theorem. J. Math. Fluid Mech. 12 (2010) 47–60.
[15] , Domains of fractional powers of the Stokes operator in L$$ spaces. Arch. Ratl. Mech. Anal. 89 (1985) 251–265.
[16] and , Abstract L$$ estimatesfor the Cauchy problem with applications to the Navier-Stokes equations in exterior domains. J. Funct. Anal. 102 (1991) 72–94.
[17] and , The Stokes equation in the Lp-setting: well-posedness and regularity properties. In Handbook of mathematical analysis in mechanics of viscous fluids. Springer, Cham (2018) 117–206.
[18] , Existence and regularity of very weak solutions of the stationary Navier-Stokes equations. Arch. Ratl. Mech. Anal. 193 (2009) 117–152.
[19] and , New criteria for the H$$-calculus and the Stokes operator on bounded Lipschitz domains. J. Evol. Equ. 17 (2017) 387–409.
[20] , Étude de diverses équations intégrales non linéaires et de quelques problèmes que pose l’hydrodynamique. J. Math. Pures Appl. 12 (1933) 1–82.
[21] , Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires. Dunod, Paris (1969).
[22] and , Problèmes aux Limites non Homogènes. Volume 1. Dunod, Paris (1968).
[23] and , -calculus for the Stokes operator on -spaces. Math. Z. 244 (2003) 651–688.
[24] , Équations de Navier-Stokes stationnaries avec données peu regulières. Ann. Sci. Norm. Sup. Pisa 10 (1983) 543–559.
[25] , Resolvent estimates in for the Stokes operator in Lipschitz domains. Arch. Ratl. Mech. Anal. 205 (2012) 395–424.
[26] , Compact sets in the space . Ann. Mat. Pura Appl. 146 (1987) 65–96.
[27] , The Navier-Stokes equations. An elementary functional analytic approach. Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks]. Birkhäuser Verlag, Basel (2001).
[28] , Navier-Stokes Equations. North-Holland, Amsterdam (1979).
[29] , On the . Ph.D. thesis, Darmstadt University (2017).
[30] , On the -theory of the Navier-Stokes equations on three-dimensional bounded Lipschitz domains. Math. Ann. 371 (2018) 445–460.
[31] , Interpolation Theory, Function Spaces, Differential Operators. North-Holland, Berlin (1978).
Cité par Sources :
The first author was partially supported by Spanish Ministerio de Economía y Competitividad under research project MTM2017-83185-P. The second was supported by the ERC advanced grant 668998 (OCLOC) under the EU’s H2020 research program.





