Well-posedness of evolutionary Navier-Stokes equations with forces of low regularity on two-dimensional domains
ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 61

Existence and uniqueness of solutions to the Navier-Stokes equations in dimension two with forces in the space L$$((0, T); W$$(Ω)) for p and q in appropriate parameter ranges are proven. The case of spatially measured-valued forces is included. For the associated Stokes equation the well-posedness results are verified in arbitrary dimensions for any 1 < p, q < .

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/cocv/2021058
Classification : 35B40, 35Q30, 76D07, 76N10
Keywords: Evolution Navier-Stokes equations, weak solutions, uniqueness clasess, sensitivity analysis, asymptotic stability
@article{COCV_2021__27_1_A63_0,
     author = {Casas, Eduardo and Kunisch, Karl},
     editor = {Buttazzo, G. and Casas, E. and de Teresa, L. and Glowinski, R. and Leugering, G. and Tr\'elat, E. and Zhang, X.},
     title = {Well-posedness of evolutionary {Navier-Stokes} equations with forces of low regularity on two-dimensional domains},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {27},
     doi = {10.1051/cocv/2021058},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/cocv/2021058/}
}
TY  - JOUR
AU  - Casas, Eduardo
AU  - Kunisch, Karl
ED  - Buttazzo, G.
ED  - Casas, E.
ED  - de Teresa, L.
ED  - Glowinski, R.
ED  - Leugering, G.
ED  - Trélat, E.
ED  - Zhang, X.
TI  - Well-posedness of evolutionary Navier-Stokes equations with forces of low regularity on two-dimensional domains
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2021
VL  - 27
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/cocv/2021058/
DO  - 10.1051/cocv/2021058
LA  - en
ID  - COCV_2021__27_1_A63_0
ER  - 
%0 Journal Article
%A Casas, Eduardo
%A Kunisch, Karl
%E Buttazzo, G.
%E Casas, E.
%E de Teresa, L.
%E Glowinski, R.
%E Leugering, G.
%E Trélat, E.
%E Zhang, X.
%T Well-posedness of evolutionary Navier-Stokes equations with forces of low regularity on two-dimensional domains
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2021
%V 27
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2021058/
%R 10.1051/cocv/2021058
%G en
%F COCV_2021__27_1_A63_0
Casas, Eduardo; Kunisch, Karl. Well-posedness of evolutionary Navier-Stokes equations with forces of low regularity on two-dimensional domains. ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 61. doi: 10.1051/cocv/2021058

[1] H. Amann, Linear and quasilinear parabolic problems. Vol. 1. Birkhäuser, Boston (1995).

[2] H. Amann, Linear parabolic problems involving measures. Rev. R. Acad. Cien. Serie A. Mat. 95 (2001) 85–119.

[3] Ch. Amrouche and V. Girault, On the existence and regularity of the solution of Stokes problem in arbitrary dimension. Proc. Jpn. Acad. Ser. A Math. Sci. 67 (1991) 171–175.

[4] P. Auscher, N. Badr, R. Haller-Dintelmann and J. Rehberg, The square root problem for second-order, divergence form operators with mixed boundary conditions on L$$. J. Evol. Equ. 15 (2015) 165–208.

[5] F. Boyer and P. Fabrie, Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models. Springer, New York (2013).

[6] H. Brezis, Functional analysis, Sobolev spaces and partial differential equations. Springer, New York (2011).

[7] E. Casas and K. Kunisch, Optimal control of the 2d stationary Navier-Stokes equations with measure valued controls. SIAM J. Control Optim. 57 (2019) 1328–1354.

[8] L. Cattabriga, Su un problema al contorno relativo al sistema di equazioni di Stokes. Rend. Mat. Semin. Univ. Padova 31 (1961) 308–340.

[9] K. Disser, A. F. M. Ter Elst and J. Rehberg, On maximal parabolic regularity for non-autonomous parabolic operators. J. Differ. Equ. 262 (2017) 2039–2072.

[10] R. Farwig, G. P. Galdi and H. Sohr, Very weak solutions and large uniqueness classes of stationary Navier-Stokes equations in bounded domains of ℝ2. J. Differ. Equ. 227 (2006) 564–580.

[11] D. Fujiwara, L$$-theory for characterizing the domain of the fractional powers of − Δ in the half space. J. Fac. Sci. Univ. Tokyo Sect. I 15 (1968) 169–177.

[12] G. P. Galdi, C. G. Simader and H. Sohr, A class of solutions to stationary Stokes and Navier-Stokes equations with boundary data in W$$. Math. Ann. 331 (2005) 41–74.

[13] G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Springer, New York (2011).

[14] M. Geissert, M. Hess, M. Hieber, C. Schwarz and K. Stavrakidis, Maximal l$$-l$$-estimates for the Stokes equation: a short proof of Solonnikov’s theorem. J. Math. Fluid Mech. 12 (2010) 47–60.

[15] Y. Giga, Domains of fractional powers of the Stokes operator in L$$ spaces. Arch. Ratl. Mech. Anal. 89 (1985) 251–265.

[16] Y. Giga and H. Sohr, Abstract L$$ estimatesfor the Cauchy problem with applications to the Navier-Stokes equations in exterior domains. J. Funct. Anal. 102 (1991) 72–94.

[17] M. Hieber and J. Saal, The Stokes equation in the Lp-setting: well-posedness and regularity properties. In Handbook of mathematical analysis in mechanics of viscous fluids. Springer, Cham (2018) 117–206.

[18] H. Kim, Existence and regularity of very weak solutions of the stationary Navier-Stokes equations. Arch. Ratl. Mech. Anal. 193 (2009) 117–152.

[19] P. C. Kunstmann and L. Weis, New criteria for the H$$-calculus and the Stokes operator on bounded Lipschitz domains. J. Evol. Equ. 17 (2017) 387–409.

[20] J. Leray, Étude de diverses équations intégrales non linéaires et de quelques problèmes que pose l’hydrodynamique. J. Math. Pures Appl. 12 (1933) 1–82.

[21] J.-L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires. Dunod, Paris (1969).

[22] J.-L. Lions and E. Magenes, Problèmes aux Limites non Homogènes. Volume 1. Dunod, Paris (1968).

[23] A. Noll and J. Saal, H -calculus for the Stokes operator on L q -spaces. Math. Z. 244 (2003) 651–688.

[24] D. Serre, Équations de Navier-Stokes stationnaries avec données peu regulières. Ann. Sci. Norm. Sup. Pisa 10 (1983) 543–559.

[25] Z. Shen, Resolvent estimates in L p for the Stokes operator in Lipschitz domains. Arch. Ratl. Mech. Anal. 205 (2012) 395–424.

[26] J. Simon, Compact sets in the space L p ( 0 , T ; B ) . Ann. Mat. Pura Appl. 146 (1987) 65–96.

[27] H. Sohr, The Navier-Stokes equations. An elementary functional analytic approach. Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks]. Birkhäuser Verlag, Basel (2001).

[28] R. Temam, Navier-Stokes Equations. North-Holland, Amsterdam (1979).

[29] P. Tolksdorf, On the L p . Ph.D. thesis, Darmstadt University (2017).

[30] P. Tolksdorf, On the L p -theory of the Navier-Stokes equations on three-dimensional bounded Lipschitz domains. Math. Ann. 371 (2018) 445–460.

[31] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators. North-Holland, Berlin (1978).

Cité par Sources :

The first author was partially supported by Spanish Ministerio de Economía y Competitividad under research project MTM2017-83185-P. The second was supported by the ERC advanced grant 668998 (OCLOC) under the EU’s H2020 research program.