State-constrained controllability of linear reaction-diffusion systems
ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 70

We study the controllability of a coupled system of linear parabolic equations, with nonnegativity constraint on the state. We establish two results of controllability to trajectories in large time: one for diagonal diffusion matrices with an “approximate” nonnegativity constraint, and a another stronger one, with “exact” nonnegativity constraint, when all the diffusion coefficients are equal and the eigenvalues of the coupling matrix have nonnegative real part. The proofs are based on a “staircase” method. Finally, we show that state-constrained controllability admits a positive minimal time, even with weaker unilateral constraint on the state.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/cocv/2021057
Classification : 35K40, 35K57, 93B05, 93C20
Keywords: Control theory, controllability, state-constrained controllability, parabolic equations
@article{COCV_2021__27_1_A72_0,
     author = {Lissy, Pierre and Moreau, Cl\'ement},
     editor = {Buttazzo, G. and Casas, E. and de Teresa, L. and Glowinski, R. and Leugering, G. and Tr\'elat, E. and Zhang, X.},
     title = {State-constrained controllability of linear reaction-diffusion systems},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {27},
     doi = {10.1051/cocv/2021057},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/cocv/2021057/}
}
TY  - JOUR
AU  - Lissy, Pierre
AU  - Moreau, Clément
ED  - Buttazzo, G.
ED  - Casas, E.
ED  - de Teresa, L.
ED  - Glowinski, R.
ED  - Leugering, G.
ED  - Trélat, E.
ED  - Zhang, X.
TI  - State-constrained controllability of linear reaction-diffusion systems
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2021
VL  - 27
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/cocv/2021057/
DO  - 10.1051/cocv/2021057
LA  - en
ID  - COCV_2021__27_1_A72_0
ER  - 
%0 Journal Article
%A Lissy, Pierre
%A Moreau, Clément
%E Buttazzo, G.
%E Casas, E.
%E de Teresa, L.
%E Glowinski, R.
%E Leugering, G.
%E Trélat, E.
%E Zhang, X.
%T State-constrained controllability of linear reaction-diffusion systems
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2021
%V 27
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2021057/
%R 10.1051/cocv/2021057
%G en
%F COCV_2021__27_1_A72_0
Lissy, Pierre; Moreau, Clément. State-constrained controllability of linear reaction-diffusion systems. ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 70. doi: 10.1051/cocv/2021057

[1] D. Allonsius and F. Boyer, Boundary null-controllability of semi-discrete coupled parabolic systems in some multi-dimensional geometries. Math. Control Relat. Fields 10 (2020) 217–256.

[2] F. Ammar-Khodja, A. Benabdallah, C. Dupaix and M. González-Burgos, A Kalman rank condition for the localized distributed controllability of a class of linear parabolic systems. J. Evol. Equ. 9 (2009) 267–291.

[3] F. Ammar-Khodja, A. Benabdallah, M. González-Burgos and L. De Teresa Recent results on the controllability of linear coupled parabolic problems: a survey. Math. Control Relat. Fields 1 (2011) 267–306.

[4] H. Antil, U. Biccari, R. Ponce, M. Warma and S. Zamorano, Controllability properties from the exterior under positivity constraints for a 1-d fractional heat equation. Preprint (2019). | arXiv

[5] A. Benabdallah, F. Boyer, M. González-Burgos and G. Olive, Sharp estimates of the one-dimensional boundary control cost for parabolic systems and application to the N-dimensional boundary null controllability in cylindrical domains. SIAM J. Control Optim. 52 (2014) 2970–3001.

[6] A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (1994).

[7] U. Biccari, M. Warma and E. Zuazua, Controllability of the one-dimensional fractional heat equation under positivity constraints. Commun. Pure Appl. Anal. 19 (2020) 1949–1978.

[8] F. Boyer, On the penalised HUM approach and its applications to the numerical approximation of null-controls for parabolic problems. ESAIM: Proc. 41 (2013) 15–58.

[9] C. Dupaix, F. Ammar Khodja, A. Benabdalah and M. Gonzalez-Burgos, A generalization of the Kalman rank condition for time-dependent coupled linear parabolic systems. Diff. Equ. Appl. 1 (2009) 427–457.

[10] E. Fernández-Cara and E. Zuazua, Null and approximate controllability for weakly blowing up semilinear heat equations. Ann. l’Institut Henri Poincaré Analyse non linéaire 17 (2000) 583–616.

[11] D. Jerison and G. Lebeau, Nodal sets of sums of eigenfunctions, in Harmonic analysis and partial differential equations (Chicago, IL, 1996). Chicago Lectures in Math. Univ. Chicago Press, Chicago, IL (1999) 223–239.

[12] O. A. Ladyzhenskaia, V. A. Solonnikov and N. N. Ural’Tseva, Vol. 23 of Linear and quasi-linear equations of parabolic type. American Mathematical Soc. (1988).

[13] K. Le Balc’H Global null-controllability and nonnegative-controllability of slightly superlinear heat equations. J. Math. Pures Appl. 135 (2020) 103–139.

[14] G. Lebeau and E. Zuazua, Null-controllability of a system of linear thermoelasticity. Arch. Ratl. Mech. Anal. 141 (1998) 297–329.

[15] P. Lissy and E. Zuazua, Internal observability for coupled systems of linear partial differential equations. SIAM J. Control Optim. 57 (2019) 832–853.

[16] J. Lohéac, E. Trélat and E. Zuazua, Minimal controllability time for the heat equation under unilateral state or control constraints. Math. Models Methods Appl. Sci. 27 (2017) 1587–1644.

[17] J. Lohéac, E. Trélat and E. Zuazua, Minimal controllability time for finite-dimensional control systems under state constraints. Automatica 96 (2018) 380–392.

[18] J. Lohéac, E. Trélat and E. Zuazua, Nonnegative control of finite-dimensional linear systems. Ann. l’Institut Henri Poincaré C, Analyse non linéaire (2020).

[19] D. Maity, M. Tucsnak and E. Zuazua, Controllability and positivity constraints in population dynamics with age structuring and diffusion. J. Math. Pures Appl. 129 (2019) 153–179.

[20] I. Mazari and D. Ruiz-Balet, Constrained control of bistable reaction-diffusion equations: Gene-flow and spatially heterogeneous models. Preprint (2020). | arXiv

[21] L. Miller, A direct Lebeau-Robbiano strategy for the observability of heat-like semigroups. Discrete Contin. Dyn. Syst. Ser. B 14 (2010) 1465–1485.

[22] M. R. Nuñez-Chávez, Controllability under positive constraints for quasilinear parabolic PDEs. Preprint (2019). | arXiv

[23] M. Pierre, Global existence in reaction-diffusion systems with control of mass: a survey. Milan J. Math. 78 (2010) 417–455.

[24] D. Pighin and E. Zuazua, Controllability under positivity constraints of semilinear heat equations. Math. Control Related Fields 8 (2018) 935–964.

[25] D. Pighin and E. Zuazua, Controllability under positivity constraints of multi-d wave equations, in Trends in Control Theory and Partial Differential Equations. Springer (2019) 195–232.

[26] D. Ruiz-Balet and E. Zuazua, Control under constraints for multi-dimensional reaction-diffusion monostable and bistable equations. J. Math. Pures Appl. 143 (2020) 345–375.

Cité par Sources :