Linearized electrodynamics and stabilization of a cold magnetized plasma
ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 60

We consider a linearized Euler–Maxwell model for the propagation and absorption of electromagnetic waves in a magnetized plasma. We present the derivation of the model, and we show its well-posedeness, its strong and polynomial stability under suitable and fairly general assumptions, its exponential stability in the same conditions as the Maxwell system, and finally its convergence to the time-harmonic regime. No homogeneity assumption is made, and the topological and geometrical assumptions on the domain are minimal. These results appear strongly linked to the spectral properties of various matrices describing the anisotropy and other plasma properties.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/cocv/2021056
Classification : 35Q61, 35B40, 37L15, 47D06, 93D20, 93D23
Keywords: Maxwell equations, plasma, hydrodynamic models, stabilization, absorbing boundary condition, evolution semigroups, strong stability, exponential stability
@article{COCV_2021__27_1_A62_0,
     author = {Labrunie, Simon and Zaafrani, Ibtissem},
     title = {Linearized electrodynamics and stabilization of a cold magnetized plasma},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {27},
     doi = {10.1051/cocv/2021056},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/cocv/2021056/}
}
TY  - JOUR
AU  - Labrunie, Simon
AU  - Zaafrani, Ibtissem
TI  - Linearized electrodynamics and stabilization of a cold magnetized plasma
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2021
VL  - 27
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/cocv/2021056/
DO  - 10.1051/cocv/2021056
LA  - en
ID  - COCV_2021__27_1_A62_0
ER  - 
%0 Journal Article
%A Labrunie, Simon
%A Zaafrani, Ibtissem
%T Linearized electrodynamics and stabilization of a cold magnetized plasma
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2021
%V 27
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2021056/
%R 10.1051/cocv/2021056
%G en
%F COCV_2021__27_1_A62_0
Labrunie, Simon; Zaafrani, Ibtissem. Linearized electrodynamics and stabilization of a cold magnetized plasma. ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 60. doi: 10.1051/cocv/2021056

[1] C. Amrouche, C. Bernardi, M. Dauge and V. Girault, Vector potentials in three-dimensional non-smooth domains. Math. Meth. Appl. Sci. 21 (1998) 823–864.

[2] W. Arendt and C. J. K Batty, Tauberian theorems and stability of one-parameter semigroups. Trans. Amer. Math. Soc. 305 (1988) 837–852.

[3] F. Assous, P. Ciarlet Jr. and S. Labrunie, Mathematical foundations of computational electromagnetism . Appl. Math. Sci. 198 (2018).

[4] A. Back, T. Hattori, S. Labrunie, J. R. Roche and P. Bertrand, Electromagnetic wave propagation and absorption in magnetised plasmas: variational formulations and domain decomposition. ESAIM: M2AN 49 (2015) 1239–1260.

[5] H. Barucq and B. Hanouzet, Asymptotic behavior of solutions to Maxwell’s system in bounded domains with absorbing boundary Silver–Mïler’s condition on the exterior boundary. Asympt. Anal. 15 (1997) 25–40.

[6] A. Borichev and Y. Tomilov, Optimal polynomial decay of functions and operator semigroups. Math. Ann. 347 (2010) 455–478.

[7] A. Buffa and P. Ciarlet Jr., On traces for functional spaces related to Maxwell’s equations. Part I: An integration by parts formula in Lipschitz polyhedra. An integration by parts formula in Lipschitz polyhedra. Math. Meth. Appl. Sci. 24 (2001) 9–30.

[8] A. Buffa and P. Ciarlet Jr., On traces for functional spaces related to Maxwell’s equations. Part II: Hodge decompositions on the boundary of Lipschitz polyhedra and applications. Math. Meth. Appl. Sci. 24 (2001) 31–48.

[9] T. Cazenave and A. Haraux, An Introduction to Semilinear Evolution Equations. Vol. 13 of Oxford Lecture Series in Mathematics and its Applications. Oxford University Press, Oxford (1998).

[10] P. G. Ciarlet, Introduction à l’analyse numérique matricielle et à l’optimisation. Masson Paris Milan Barcelone Mexico (1988).

[11] M. Eller, J. Lagnese and S. Nicaise, Decay rates for solutions of a Maxwell system with nonlinear boundary damping. Comput. Appl. Math. 21 (2002) 135–165.

[12] P. Fernandes and G. Gilardi, Magnetostatic and electrostatic problems in inhomogeneous anisotropic media with irregular boundary and mixed boundary conditions. Math. Models Meth. App. Sci. 7 (1997) 957–991.

[13] T. Hattori, Décomposition de domaine pour la simulation Full-Wave dans un plasma froid. Thèse, Université de Lorraine (2014). http://docnum.univ-lorraine.fr/public/DDOC_T_2014_0380_HATTORI.pdf.

[14] F. L. Huang, Characteristic conditions for exponential stability of linear dynamical systems in Hilbert spaces. Ann. Differ. Equ. 1 (1985) 43–56.

[15] V. Komornik, Boundary stabilization, observation and control of Maxwell’s equations. PanAmer. Math. J. 4 (1994) 47–61.

[16] S. Labrunie and I. Zaafrani, Dynamique d’un plasma magnétique froid. Prépublication HAL no. 01572067, version 2, 2017. Online: . | HAL

[17] Y. I. Lyubich and Q. P. Vu, Asymptotic stability of linear differential equations in Banach spaces. Studia Math. 88 (1988) 37–42.

[18] S. Nicaise, Stabilization and asymptotic behavior of dispersive medium models. Syst. Control Lett. 61 (2012), 638–648.

[19] S. Nicaise, Stabilization of a Drude / vacuum model. J. Anal. Appl. 37 (2018) 349–375.

[20] S. Nicaise and C. Pignotti, Boundary stabilization of Maxwell?s equations with space-time variable coefficients. ESAIM: COCV 9 (2003) 563–578.

[21] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations. Vol. 44 of Applied Mathematical Sciences. Springer-Verlag (1983).

[22] K. D. Phung, Contrôle et stabilisation d’ondes électromagnétiques. ESAIM: COCV 5 (2000) 87–137.

[23] J. Prüss, On the spectrum of C0-semigroups. Trans. Am. Math. Soc. 284 (1984) 847–857.

[24] T. H. Stix, Waves in plasmas. American Institute of Physics, New York (1992).

[25] J. Viquerat, M. Klemm, S. Lanteri, and C. Scheid, Theoretical and numerical analysis of local dispersion models coupled to a discontinuous Galerkin time-domain method for Maxwell’s equations. Technical Report 8298, INRIA (2013). | HAL

[26] C. Weber, A local compactness theorem for Maxwell’s equations. Math. Meth. Appl. Sci. 2 (1980) 12–25.

Cité par Sources :

The second author thanks the Campus France Eiffel Excellence Programme for its financial support.