Outer invariance entropy for discrete-time linear systems on Lie groups
ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 55

We introduce discrete-time linear control systems on connected Lie groups and present an upper bound for the outer invariance entropy of admissible pairs (K, Q). If the stable subgroup of the uncontrolled system is closed and K has positive measure for a left invariant Haar measure, the upper bound coincides with the outer invariance entropy.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/cocv/2021054
Classification : 93B05, 37B40, 94A17, 16W20
Keywords: Invariance entropy, linear systems, discrete-time control systems, Lie groups
@article{COCV_2021__27_1_A57_0,
     author = {Colonius, Fritz and Cossich, Jo\~ao A. N. and Santana, Alexandre J.},
     title = {Outer invariance entropy for discrete-time linear systems on {Lie} groups},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {27},
     doi = {10.1051/cocv/2021054},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/cocv/2021054/}
}
TY  - JOUR
AU  - Colonius, Fritz
AU  - Cossich, João A. N.
AU  - Santana, Alexandre J.
TI  - Outer invariance entropy for discrete-time linear systems on Lie groups
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2021
VL  - 27
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/cocv/2021054/
DO  - 10.1051/cocv/2021054
LA  - en
ID  - COCV_2021__27_1_A57_0
ER  - 
%0 Journal Article
%A Colonius, Fritz
%A Cossich, João A. N.
%A Santana, Alexandre J.
%T Outer invariance entropy for discrete-time linear systems on Lie groups
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2021
%V 27
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2021054/
%R 10.1051/cocv/2021054
%G en
%F COCV_2021__27_1_A57_0
Colonius, Fritz; Cossich, João A. N.; Santana, Alexandre J. Outer invariance entropy for discrete-time linear systems on Lie groups. ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 55. doi: 10.1051/cocv/2021054

[1] V. Ayala and A. Da Silva, To appear Dynamics of endomorphisms of Lie groups and their topological entropy..

[2] V. Ayala, A. Da Silva, J. Philippe and G. Zsigmond, Control sets of linear systems on semi-simple Lie groups. J. Diff. Equ. 269 (2020) 449–466.

[3] V. Ayala, A. Da Silva and G. Zsigmond, Control sets of linear systems on Lie groups. Nonlinear Differ. Equ. Appl. 24 (2017) 7–15.

[4] R. Bowen, Entropy for group endomorphisms and homogeneous spaces. Trans. Am. Math. Soc. 153 (1971) 401–414.

[5] F. Colonius, J. A. N. Cossich and A. Santana, Controllability properties and invariance pressure for linear discrete-time systems, J. Dyn. Differ. Equ. (2021), DOI . | DOI

[6] F. Colonius and C. Kawan, Invariance entropy for control systems. SIAM J. Control Optim. 48 (2009) 1701–1721.

[7] A. Da Silva, Outer invariance entropy for linear systems on Lie groups. SIAM J. Control Optim. 52 (2014) 3917–3934.

[8] A. Da Silva, Controllability of linear systems on solvable Lie groups. SIAM J. Control Optim. 54 (2016) 372–390.

[9] A. Da Silva and C. Kawan, Invariance entropy of hyperbolic control sets. Discr. Continu. Dyn. Syst. 36 (2016) 97–136.

[10] A. Da Silva and C. Kawan, Lyapunov exponents and partial hyperbolicity of chain control sets on flag manifolds. Israel J. Math. 232 (2019) 947–1000.

[11] C. Kawan, Invariance entropy of control sets. SIAM J. Control Optim. 49 (2011) 732–751.

[12] C. Kawan, Invariance Entropy for Deterministic Control Systems. An Introduction. Vol. 2089 of LNM. Springer, Berlin (2013).

[13] A. Knapp, Lie Groups Beyond an Introduction, Second Edition, Birkhäuser (2002).

[14] G. Nair, R. J. Evans, I. Mareels and W. Moran, Topological feedback entropy and nonlinear stabilization. IEEE Trans. Aut. Control 49 (2004) 1585–1597.

[15] L. San Martin, Grupos de Lie, Editora Unicamp, 2016 Campinas.

[16] E. Sontag, Mathematical Control Theory. Deterministic Finite Dimensional Systems, 2nd edn. Springer-Verlag, New York (1998).

[17] P. Walters, An Introduction to Ergodic Theory. Springer-Verlag (1982).

Cité par Sources :