ISS estimates in the spatial sup-norm for nonlinear 1-D parabolic PDEs
ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 57

This paper provides novel Input-to-State Stability (ISS)-style maximum principle estimates for classical solutions of nonlinear 1-D parabolic Partial Differential Equations (PDEs). The derivation of the ISS-style maximum principle estimates is performed in two ways: by using an ISS Lyapunov Functional for the sup norm and by exploiting well-known maximum principles. The estimates provide fading memory ISS estimates in the sup norm of the state with respect to distributed and boundary inputs. The obtained results can handle parabolic PDEs with nonlinear and non-local in-domain terms/boundary conditions. Three illustrative examples show the efficiency of the proposed methodology for the derivation of ISS estimates in the sup norm of the state.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/cocv/2021053
Classification : 35K10, 93D20, 93C20
Keywords: ISS, parabolic PDEs, maximum principles, boundary disturbances
@article{COCV_2021__27_1_A59_0,
     author = {Karafyllis, Iasson and Krstic, Miroslav},
     editor = {Buttazzo, G. and Casas, E. and de Teresa, L. and Glowinski, R. and Leugering, G. and Tr\'elat, E. and Zhang, X.},
     title = {ISS estimates in the spatial sup-norm for nonlinear {1-D} parabolic {PDEs}},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {27},
     doi = {10.1051/cocv/2021053},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/cocv/2021053/}
}
TY  - JOUR
AU  - Karafyllis, Iasson
AU  - Krstic, Miroslav
ED  - Buttazzo, G.
ED  - Casas, E.
ED  - de Teresa, L.
ED  - Glowinski, R.
ED  - Leugering, G.
ED  - Trélat, E.
ED  - Zhang, X.
TI  - ISS estimates in the spatial sup-norm for nonlinear 1-D parabolic PDEs
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2021
VL  - 27
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/cocv/2021053/
DO  - 10.1051/cocv/2021053
LA  - en
ID  - COCV_2021__27_1_A59_0
ER  - 
%0 Journal Article
%A Karafyllis, Iasson
%A Krstic, Miroslav
%E Buttazzo, G.
%E Casas, E.
%E de Teresa, L.
%E Glowinski, R.
%E Leugering, G.
%E Trélat, E.
%E Zhang, X.
%T ISS estimates in the spatial sup-norm for nonlinear 1-D parabolic PDEs
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2021
%V 27
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2021053/
%R 10.1051/cocv/2021053
%G en
%F COCV_2021__27_1_A59_0
Karafyllis, Iasson; Krstic, Miroslav. ISS estimates in the spatial sup-norm for nonlinear 1-D parabolic PDEs. ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 57. doi: 10.1051/cocv/2021053

[1] A. Balogh, D. S. Gilliam and V. I. Shubov, Some recent results on feedback regularization of Navier-Stokes equations., Proceedings of the 36th Conference on Decision & Control, San Diego, California USA (1997) 2231–2236.

[2] T. Cazenave and A. Haraux, An Introduction to Semilinear Evolution Equations. Oxford Lecture Series in Mathematics and its Applications, Oxford University Press (1980).

[3] S. Dashkovskiy and A. Mironchenko, Input-to-state stability of infinite-dimensional control systems. Math. Control Signals Syst. 25 (2013) 1–35.

[4] A. Friedman, Partial Differential Equations of Parabolic Type, Dover (2008).

[5] M. Gunzburger, E. Lee, Y. Saka, C. Trenchea and X. Wang, Analysis of nonlinear spectral Eddy-viscosity models of turbulence. J. Sci. Comput. 45 (2010) 294–332.

[6] F. Hamba, Nonlocal expression for scalar flux in turbulent shear flow. Phys. Fluids 16 (2004) 1493–1508.

[7] B. Jacob, R. Nabiullin, J. R. Partington and F. L. Schwenninger, Infinite-dimensional input-to-state stability and Orlicz spaces. SIAM J. Control Optim. 56 (2018) 868–889.

[8] B. Jacob, F. L. Schwenninger and H. Zwart, On continuity of solutions for parabolic control systems and input-to-state stability. J. Differ. Equ. 266 (2019) 6284–6306.

[9] B. Jacob, A. Mironchenko, J. R. Partington and F. Wirth, Non-coercive Lyapunov functions for input-to-state stability of infinite-dimensional systems. SIAM J. Control Optim. 58 (2020) 2952–2978.

[10] F. John, Partial Differential Equations, 4th Edition, Springer-Verlag, New York (1982).

[11] I. Karafyllis and Z.-P. Jiang, Stability and Stabilization of Nonlinear Systems. Springer-Verlag, London (Series: Communications and Control Engineering) (2011).

[12] I. Karafyllis and M. Krstic, ISS in different norms for 1-D parabolic PDEs with boundary disturbances. SIAM J. Control Optim. 55 (2017) 1716–1751.

[13] I. Karafyllis and M. Krstic, Sampled-data boundary feedback control of 1-D parabolic PDEs. Automatica 87 (2018) 226–237.

[14] I. Karafyllis and M. Krstic, Decay estimates for 1-D parabolic PDEs with boundary disturbances. ESAIM: COCV 24 (2018) 1511–1540.

[15] I. Karafyllis and M. Krstic, Small-gain-based boundary feedback design for global exponential stabilization of 1-D semilinear parabolicPDEs. SIAM J. Control Optim. 57 (2019) 2016–2036.

[16] I. Karafyllis and M. Krstic, Input-to-State Stability for PDEs. Springer-Verlag, London (Series: Communications and Control Engineering) (2019).

[17] I. Karafyllis, T. Ahmed-Ali and F. Giri, Sampled-data observers for 1-D parabolic PDEs with non-local outputs. Syst. Control Lett. 133 (2019) 104553.

[18] O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Ural’Ceva, Linear and Quasilinear Equations of Parabolic Type. Trans. AMS 23 (1968).

[19] O. A. Ladyzhenskaya, New equations for the description of the motions of viscous incompressible fluids, and global solvability for their boundary value problems. Bound. Value Probl. Math. Phys. Part 5, Trudy Matematicheskogo Instituta imeni V.A. Steklova 102 (1967) 85–104 and Proc. Steklov Inst. Math. 102 (1967) 95–118.

[20] A. Mironchenko and F. Wirth, Characterizations of input-to-state stability for infinite-dimensional systems. IEEE Trans. Autom. Control 63 (2018) 1602–1617.

[21] A. Mironchenko, I. Karafyllis and M. Krstic, Monotonicity methods for input-to-state stability of nonlinear parabolic PDEs with boundary disturbances. SIAM J. Control Optim. 57 (2019) 510–532.

[22] A. Mironchenko and C. Prieur, Input-to-state stability of infinite-dimensional systems: recent results and open questions. SIAM Rev. 62 (2020) 529–614.

[23] M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations. Springer-Verlag, New York (1984).

[24] G. A. Slack, Nonmetallic crystals with high thermal conductivity. J. Phys. Chem. Solids 34 (1973) 321–335.

[25] J. Smoller, Shock Waves and Reaction-Diffusion Equations, 2nd edition, Springer-Verlag, New York (1994).

[26] A. Tanwani, C. Prieur and S. Tarbouriech, Disturbance-to-state stabilization and quantized control for linear hyperbolic systems. | arXiv

[27] R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, 2nd edition, Springer (1997).

[28] J. Zheng and G. Zhu, Input-to-state stability with respect to boundary disturbances for a class of semi-linear parabolic equations. Automatica 97 (2018) 271–277.

[29] J. Zheng and G. Zhu, A De Giorgi iteration-based approach for the establishment of ISS properties for Burgers’ equation with boundary and in-domain disturbances. IEEE Trans. Autom. Control 64 (2019) 3476–3483.

[30] J. Zheng and G. Zhu, A weak maximum principle-based approach for input-to-state stability analysis of nonlinear parabolic PDEs with boundary disturbances. Math. Control Signals Syst. 32 (2020) 157–176.

[31] J. Zheng and G. Zhu, ISS-like estimates for nonlinear parabolic PDEs with variable coefficients on higher dimensional domains. Syst. Control Lett. 146 (2020) 104808.

Cité par Sources :