On a certain compactification of an arbitrary subset of m and its applications to DiPerna-Majda measures theory
ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 52

We present a constructive proof of the fact, that for any subset 𝒜 ⊆ ℝ$$ and a countable family of bounded functions f : 𝒜 → ℝ there exists a compactification 𝒜2 of 𝒜 such that every function f possesses a continuous extension to a function $$. However related to some classical theorems, our result is direct and hence applicable in Calculus of Variations. Our construction is then used to represent limits of weakly convergent sequences {f(u$$)} via methods related to DiPerna-Majda measures. In particular, as our main application, we generalise the Representation Theorem from the Calculus of Variations due to Kałamajska.

DOI : 10.1051/cocv/2021048
Classification : 49J45, 49R99, 28A33
Keywords: DiPerna-Majda measures, compactification, weak-⋆ convergence
@article{COCV_2021__27_1_A54_0,
     author = {Kozarzewski, Piotr Antoni},
     title = {On a certain compactification of an arbitrary subset of $\mathbb{R}^m$ and its applications to {DiPerna-Majda} measures theory},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {27},
     doi = {10.1051/cocv/2021048},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/cocv/2021048/}
}
TY  - JOUR
AU  - Kozarzewski, Piotr Antoni
TI  - On a certain compactification of an arbitrary subset of $\mathbb{R}^m$ and its applications to DiPerna-Majda measures theory
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2021
VL  - 27
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/cocv/2021048/
DO  - 10.1051/cocv/2021048
LA  - en
ID  - COCV_2021__27_1_A54_0
ER  - 
%0 Journal Article
%A Kozarzewski, Piotr Antoni
%T On a certain compactification of an arbitrary subset of $\mathbb{R}^m$ and its applications to DiPerna-Majda measures theory
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2021
%V 27
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2021048/
%R 10.1051/cocv/2021048
%G en
%F COCV_2021__27_1_A54_0
Kozarzewski, Piotr Antoni. On a certain compactification of an arbitrary subset of $\mathbb{R}^m$ and its applications to DiPerna-Majda measures theory. ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 52. doi: 10.1051/cocv/2021048

[1] J. Alibert and G. Bouchitté, Non-uniform integrability and generalized Young measures. J. Convex Anal. 4 (1997) 129–147.

[2] W. Arveson, An Invitation to C*-Algebras. Graduate Texts in Mathematics. Springer-Verlag, New York (1976).

[3] J.-P. Aubin and H. Frankowska, Set-Valued Analysis Modern Birkhäuser Classics, Birkhäuser, Boston (1990).

[4] J. M. Ball, A version of the fundamental theorem for Young measures, in PDEs and Continuum Models of Phase Transitions. M. Rascle, D. Serre, and M. Slemrod. Springer, Berlin Heidelberg (1989) 207–215.

[5] S. Banach and S. Mazur, Zur theorie der linearen dimension. Stud. Math. 4 (1933) 100–112.

[6] A. C. Barroso, G. Bouchitté, G. Buttazzo and I. Fonseca, Relaxation of bulk and interfacial energies. Arch. Ratl. Mech. Anal. 135 (1996) 107–173.

[7] V. I. Bogachev, Measure Theory, vol. II. Springer, Berlin, Heidelberg (2007).

[8] G. Bouchitté, I. Fonseca and L. Mascarenhas, A global method for relaxation. Arch. Ratl. Mech. Anal. 145 (1998) 51–98.

[9] G. Carita and E. Zappale, Relaxation for an optimal design problem with linear growth and perimeter penalization. Proc. Roy. Soc. Edinburgh 145 (2015) 223–268.

[10] B. Dacorogna, Weak continuity and weak lower semicontinuity of nonlinear functionals. Uspekhi Mat. Nauk 44 (1989) 35–98.

[11] R. J. Diperna and A. J. Majda, Oscillations and concentrations in weak solutions of the incompressible fluid equations. Commun. Math. Phys. 108 (1987) 667–689.

[12] R. Engelking, General topology. Vol. 6 of Sigma Series in Pure Mathematics. Heldermann Verlag Berlin (1989).

[13] I. Fonseca and S. Müller, Relaxation of quasiconvex functional in BV(ω, ℝ$$) for integrands f(x, u, ∇u). Arch. Ratl. Mech. Anal. 123 (1993) 1–49.

[14] I. M. Gelfand, Normierte Ringe. Rec. Math. [Mat. Sbornik] N.S. 9 (1941) 3–24.

[15] I. M. Gelfand and M. A. Naimark, On the imbedding of normed rings into the ring of operators on a Hilbert space. Math. Sbornik 12 (1943) 197–217.

[16] N. Hüngerbuhler, A refinement of Ball’s theorem on Young measures. New York J. Math. 3 (1997) 48–53.

[17] A. Kałamajska, On one generalization of a theorem by DiPerna and Majda. Math. Methods Appl. Sci. 29 (2006) 1307–1325.

[18] A. Kałamajska, On Young measures controlling discontinuous functions. J. Convex Anal. 13 (2006) 177–192.

[19] A. Kałamajska, Oscillation and concentration effects described by Young measures which control discontinuous functions. Topolog. Methods Nonlinear Anal. 31 (2008) 111–138.

[20] A. Kałamajska, On one method of improving weakly converging sequence of gradients. Asymptotic Anal. 62 (2009) 107–123.

[21] A. Kałamajska, On one extension of Decomposition Lemma dealing with weakly converging sequences of gradients with application to nonconvex variational problems. J. Convex Anal. 20 (2013) 545–571.

[22] A. Kałamajska and M. Kružik, Oscillations and concentrations in sequences of gradients. ESAIM: COCV 14 (2008) 71–104.

[23] J. Keesling, The one-dimensional Čech cohomology of the Higson compactification and its corona. Topol. Proc. 19 (1994) 129–148.

[24] P. A. Kozarzewski, On existence of the support of a Borel measure. Demonstratio Math. 76 (2018) 76–84.

[25] S. Krömer and M. Kruzik, Oscillations and concentrations up to the boundary. J. Convex Anal. 20 (2013) 723–752.

[26] Y. G. Reshetnyak, Weak convergence of completely additive vector functions on a set. Syberian Math. J. 9 (1968) 1039–1045.

Cité par Sources :